Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 116


Percutaneous intervention in peripheral artery disease improves calf muscle phosphocreatine recovery kinetics: a pilot study.

West AM, Anderson JD, Epstein FH, Meyer CH, Hagspiel KD, Berr SS, Harthun NL, Weltman AL, Annex BH, Kramer CM.

Vasc Med. 2012 Feb;17(1):3-9. doi: 10.1177/1358863X11431837.


Multifactorial determinants of functional capacity in peripheral arterial disease: uncoupling of calf muscle perfusion and metabolism.

Anderson JD, Epstein FH, Meyer CH, Hagspiel KD, Wang H, Berr SS, Harthun NL, Weltman A, Dimaria JM, West AM, Kramer CM.

J Am Coll Cardiol. 2009 Aug 11;54(7):628-35. doi: 10.1016/j.jacc.2009.01.080.


Low-density lipoprotein lowering does not improve calf muscle perfusion, energetics, or exercise performance in peripheral arterial disease.

West AM, Anderson JD, Epstein FH, Meyer CH, Wang H, Hagspiel KD, Berr SS, Harthun NL, Weltman AL, Dimaria JM, Hunter JR, Christopher JM, Kramer CM.

J Am Coll Cardiol. 2011 Aug 30;58(10):1068-76. doi: 10.1016/j.jacc.2011.04.034.


High-energy phosphate metabolism during incremental calf exercise in patients with unilaterally symptomatic peripheral arterial disease measured by phosphor 31 magnetic resonance spectroscopy.

Greiner A, Esterhammer R, Messner H, Biebl M, Mühlthaler H, Fraedrich G, Jaschke WR, Schocke MF.

J Vasc Surg. 2006 May;43(5):978-86.


Arterial spin labeling MR imaging reproducibly measures peak-exercise calf muscle perfusion: a study in patients with peripheral arterial disease and healthy volunteers.

Pollak AW, Meyer CH, Epstein FH, Jiji RS, Hunter JR, Dimaria JM, Christopher JM, Kramer CM.

JACC Cardiovasc Imaging. 2012 Dec;5(12):1224-30. doi: 10.1016/j.jcmg.2012.03.022.


Peripheral arterial disease assessment: wall, perfusion, and spectroscopy.

Kramer CM.

Top Magn Reson Imaging. 2007 Oct;18(5):357-69.


Delayed calf muscle phosphocreatine recovery after exercise identifies peripheral arterial disease.

Isbell DC, Berr SS, Toledano AY, Epstein FH, Meyer CH, Rogers WJ, Harthun NL, Hagspiel KD, Weltman A, Kramer CM.

J Am Coll Cardiol. 2006 Jun 6;47(11):2289-95.


Preliminary evidence that low ankle-brachial index is associated with reduced bilateral hip extensor strength and functional mobility in peripheral arterial disease.

Parmenter BJ, Raymond J, Dinnen PJ, Lusby RJ, Fiatarone Singh MA.

J Vasc Surg. 2013 Apr;57(4):963-973.e1. doi: 10.1016/j.jvs.2012.08.103.


Calf muscle stimulation with the Veinoplus device results in a significant increase in lower limb inflow without generating limb ischemia or pain in patients with peripheral artery disease.

Abraham P, Mateus V, Bieuzen F, Ouedraogo N, Cisse F, Leftheriotis G.

J Vasc Surg. 2013 Mar;57(3):714-9. doi: 10.1016/j.jvs.2012.08.117.


Prevalence and Causes of Normal Exercise Oximetry in the Calf in Patients with Peripheral Artery Disease and Limiting Calf Claudication.

Signolet I, Henni S, Colas-Ribas C, Feuilloy M, Picquet J, Abraham P.

Eur J Vasc Endovasc Surg. 2016 Apr;51(4):572-8. doi: 10.1016/j.ejvs.2015.12.040.


Reproducibility of rest and exercise stress contrast-enhanced calf perfusion magnetic resonance imaging in peripheral arterial disease.

Jiji RS, Pollak AW, Epstein FH, Antkowiak PF, Meyer CH, Weltman AL, Lopez D, DiMaria JM, Hunter JR, Christopher JM, Kramer CM.

J Cardiovasc Magn Reson. 2013 Jan 23;15:14. doi: 10.1186/1532-429X-15-14.


Clinical significance of ankle systolic blood pressure following exercise in assessing calf muscle tissue ischemia in peripheral artery disease.

Khurana A, Stoner JA, Whitsett TL, Rathbun S, Montgomery PS, Gardner AW.

Angiology. 2013 Jul;64(5):364-70. doi: 10.1177/0003319712446797.


Phosphocreatine kinetics in the calf muscle of patients with bilateral symptomatic peripheral arterial disease during exhaustive incremental exercise.

Esterhammer R, Schocke M, Gorny O, Posch L, Messner H, Jaschke W, Fraedrich G, Greiner A.

Mol Imaging Biol. 2008 Jan-Feb;10(1):30-9.


Arterial spin labeling perfusion cardiovascular magnetic resonance of the calf in peripheral arterial disease: cuff occlusion hyperemia vs exercise.

Lopez D, Pollak AW, Meyer CH, Epstein FH, Zhao L, Pesch AJ, Jiji R, Kay JR, DiMaria JM, Christopher JM, Kramer CM.

J Cardiovasc Magn Reson. 2015 Feb 22;17:23. doi: 10.1186/s12968-015-0128-y.


High-energy phosphate metabolism in the calf muscle of healthy humans during incremental calf exercise with and without moderate cuff stenosis.

Greiner A, Esterhammer R, Bammer D, Messner H, Kremser C, Jaschke WR, Fraedrich G, Schocke MF.

Eur J Appl Physiol. 2007 Mar;99(5):519-31.


High-energy phosphate metabolism during calf ergometry in patients with isolated aorto-iliac artery stenoses.

Schocke MF, Esterhammer R, Ostermann S, Santner W, Gorny O, Fraedrich G, Jaschke WR, Greiner A.

Invest Radiol. 2006 Dec;41(12):874-82.


Calf muscle hemoglobin oxygen saturation characteristics and exercise performance in patients with intermittent claudication.

Gardner AW, Parker DE, Webb N, Montgomery PS, Scott KJ, Blevins SM.

J Vasc Surg. 2008 Sep;48(3):644-9. doi: 10.1016/j.jvs.2008.04.005.


Phosphorus 31 nuclear magnetic resonance spectroscopy suggests a mitochondrial defect in claudicating skeletal muscle.

Pipinos II, Shepard AD, Anagnostopoulos PV, Katsamouris A, Boska MD.

J Vasc Surg. 2000 May;31(5):944-52.


The effect of current cigarette smoking on calf muscle hemoglobin oxygen saturation in patients with intermittent claudication.

Afaq A, Montgomery PS, Scott KJ, Blevins SM, Whitsett TL, Gardner AW.

Vasc Med. 2007 Aug;12(3):167-73.


Mitochondrial function and oxygen supply in normal and in chronically ischemic muscle: a combined 31P magnetic resonance spectroscopy and near infrared spectroscopy study in vivo.

Kemp GJ, Roberts N, Bimson WE, Bakran A, Harris PL, Gilling-Smith GL, Brennan J, Rankin A, Frostick SP.

J Vasc Surg. 2001 Dec;34(6):1103-10.

Items per page

Supplemental Content

Support Center