Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 131

1.

Controlled cell death by magnetic hyperthermia: effects of exposure time, field amplitude, and nanoparticle concentration.

Asín L, Ibarra MR, Tres A, Goya GF.

Pharm Res. 2012 May;29(5):1319-27. doi: 10.1007/s11095-012-0710-z. Epub 2012 Feb 24.

PMID:
22362408
2.

Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells.

Marcos-Campos I, Asín L, Torres TE, Marquina C, Tres A, Ibarra MR, Goya GF.

Nanotechnology. 2011 May 20;22(20):205101. doi: 10.1088/0957-4484/22/20/205101. Epub 2011 Mar 28.

PMID:
21444956
3.

Induced cell toxicity originates dendritic cell death following magnetic hyperthermia treatment.

Asín L, Goya GF, Tres A, Ibarra MR.

Cell Death Dis. 2013 Apr 18;4:e596. doi: 10.1038/cddis.2013.121.

4.

Magnetic stent hyperthermia for esophageal cancer: an in vitro investigation in the ECA-109 cell line.

Liu JY, Zhao LY, Wang YY, Li DY, Tao D, Li LY, Tang JT.

Oncol Rep. 2012 Mar;27(3):791-7. doi: 10.3892/or.2011.1603. Epub 2011 Dec 21.

PMID:
22200741
5.

Contribution of a 300 kHz alternating magnetic field on magnetic hyperthermia treatment of HepG2 cells.

Wang X, Chen Y, Huang C, Wang X, Zhao L, Zhang X, Tang J.

Bioelectromagnetics. 2013 Feb;34(2):95-103. doi: 10.1002/bem.21761. Epub 2012 Oct 11.

PMID:
23059525
6.

Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer.

Ivkov R, DeNardo SJ, Daum W, Foreman AR, Goldstein RC, Nemkov VS, DeNardo GL.

Clin Cancer Res. 2005 Oct 1;11(19 Pt 2):7093s-7103s.

7.

Glutaraldehyde mediated conjugation of amino-coated magnetic nanoparticles with albumin protein for nanothermotherapy.

Zhao L, Yang B, Dai X, Wang X, Gao F, Zhang X, Tang J.

J Nanosci Nanotechnol. 2010 Nov;10(11):7117-20.

PMID:
21137877
8.

[Magnetically based enhancement of nanoparticle uptake in tumor cells: combination of magnetically induced cell labeling and magnetic heating].

Kettering M, Winter J, Zeisberger M, Alexiou C, Bremer-Streck S, Bergemann C, Kaiser WA, Hilger I.

Rofo. 2006 Dec;178(12):1255-60. German.

PMID:
17136650
9.

Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia.

Khandhar AP, Ferguson RM, Simon JA, Krishnan KM.

J Biomed Mater Res A. 2012 Mar;100(3):728-37. doi: 10.1002/jbm.a.34011. Epub 2011 Dec 30.

10.
11.

Herceptin-directed nanoparticles activated by an alternating magnetic field selectively kill HER-2 positive human breast cells in vitro via hyperthermia.

Zhang J, Dewilde AH, Chinn P, Foreman A, Barry S, Kanne D, Braunhut SJ.

Int J Hyperthermia. 2011;27(7):682-97. doi: 10.3109/02656736.2011.609863.

PMID:
21992561
12.

Tumour cell toxicity of intracellular hyperthermia mediated by magnetic nanoparticles.

Wilhelm C, Fortin JP, Gazeau F.

J Nanosci Nanotechnol. 2007 Aug;7(8):2933-7.

PMID:
17685322
13.

Effect of surface charge and agglomerate degree of magnetic iron oxide nanoparticles on KB cellular uptake in vitro.

Ge Y, Zhang Y, Xia J, Ma M, He S, Nie F, Gu N.

Colloids Surf B Biointerfaces. 2009 Oct 15;73(2):294-301. doi: 10.1016/j.colsurfb.2009.05.031. Epub 2009 Jun 7.

PMID:
19564099
14.

Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia.

Khot VM, Salunkhe AB, Thorat ND, Ningthoujam RS, Pawar SH.

Dalton Trans. 2013 Jan 28;42(4):1249-58. doi: 10.1039/c2dt31114c.

PMID:
23138108
15.

Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.

Li FR, Yan WH, Guo YH, Qi H, Zhou HX.

Int J Hyperthermia. 2009 Aug;25(5):383-91. doi: 10.1080/02656730902834949.

PMID:
19391033
16.

Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease.

Zadnik PL, Molina CA, Sarabia-Estrada R, Groves ML, Wabler M, Mihalic J, McCarthy EF, Gokaslan ZL, Ivkov R, Sciubba D.

J Neurosurg Spine. 2014 Jun;20(6):740-50. doi: 10.3171/2014.2.SPINE13142. Epub 2014 Apr 4.

PMID:
24702509
17.

Application of magnetically induced hyperthermia in the model protozoan Crithidia fasciculata as a potential therapy against parasitic infections.

Grazú V, Silber AM, Moros M, Asín L, Torres TE, Marquina C, Ibarra MR, Goya GF.

Int J Nanomedicine. 2012;7:5351-60. doi: 10.2147/IJN.S35510. Epub 2012 Oct 8.

18.

Morphological effect of oscillating magnetic nanoparticles in killing tumor cells.

Cheng D, Li X, Zhang G, Shi H.

Nanoscale Res Lett. 2014 Apr 28;9(1):195. doi: 10.1186/1556-276X-9-195. eCollection 2014.

19.

Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties.

Iacovita C, Florea A, Dudric R, Pall E, Moldovan AI, Tetean R, Stiufiuc R, Lucaciu CM.

Molecules. 2016 Oct 13;21(10). pii: E1357.

20.

Reduced astrocyte viability at physiological temperatures from magnetically activated iron oxide nanoparticles.

Schaub NJ, Rende D, Yuan Y, Gilbert RJ, Borca-Tasciuc DA.

Chem Res Toxicol. 2014 Dec 15;27(12):2023-35. doi: 10.1021/tx500231f. Epub 2014 Nov 12.

PMID:
25347722

Supplemental Content

Support Center