Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 85

1.

Rational design of pathogen-mimicking amphiphilic materials as nanoadjuvants.

Ulery BD, Petersen LK, Phanse Y, Kong CS, Broderick SR, Kumar D, Ramer-Tait AE, Carrillo-Conde B, Rajan K, Wannemuehler MJ, Bellaire BH, Metzger DW, Narasimhan B.

Sci Rep. 2011;1:198. doi: 10.1038/srep00198. Epub 2011 Dec 16.

2.

Activation of innate immune responses in a pathogen-mimicking manner by amphiphilic polyanhydride nanoparticle adjuvants.

Petersen LK, Ramer-Tait AE, Broderick SR, Kong CS, Ulery BD, Rajan K, Wannemuehler MJ, Narasimhan B.

Biomaterials. 2011 Oct;32(28):6815-22. doi: 10.1016/j.biomaterials.2011.05.063. Epub 2011 Jun 24.

PMID:
21703679
3.

Lung deposition and cellular uptake behavior of pathogen-mimicking nanovaccines in the first 48 hours.

Ross KA, Haughney SL, Petersen LK, Boggiatto P, Wannemuehler MJ, Narasimhan B.

Adv Healthc Mater. 2014 Jul;3(7):1071-7. doi: 10.1002/adhm.201300525. Epub 2014 Feb 12.

PMID:
24520022
4.

Carbohydrate-functionalized nanovaccines preserve HIV-1 antigen stability and activate antigen presenting cells.

Vela Ramirez JE, Roychoudhury R, Habte HH, Cho MW, Pohl NL, Narasimhan B.

J Biomater Sci Polym Ed. 2014;25(13):1387-406. doi: 10.1080/09205063.2014.940243. Epub 2014 Jul 28.

5.

Mannose-functionalized "pathogen-like" polyanhydride nanoparticles target C-type lectin receptors on dendritic cells.

Carrillo-Conde B, Song EH, Chavez-Santoscoy A, Phanse Y, Ramer-Tait AE, Pohl NL, Wannemuehler MJ, Bellaire BH, Narasimhan B.

Mol Pharm. 2011 Oct 3;8(5):1877-86. doi: 10.1021/mp200213r. Epub 2011 Sep 13.

PMID:
21882825
6.

Harvesting murine alveolar macrophages and evaluating cellular activation induced by polyanhydride nanoparticles.

Chavez-Santoscoy AV, Huntimer LM, Ramer-Tait AE, Wannemuehler M, Narasimhan B.

J Vis Exp. 2012 Jun 8;(64):e3883. doi: 10.3791/3883.

7.

Design of a protective single-dose intranasal nanoparticle-based vaccine platform for respiratory infectious diseases.

Ulery BD, Kumar D, Ramer-Tait AE, Metzger DW, Wannemuehler MJ, Narasimhan B.

PLoS One. 2011 Mar 3;6(3):e17642. doi: 10.1371/journal.pone.0017642.

8.

Polyanhydride microparticles enhance dendritic cell antigen presentation and activation.

Torres MP, Wilson-Welder JH, Lopac SK, Phanse Y, Carrillo-Conde B, Ramer-Tait AE, Bellaire BH, Wannemuehler MJ, Narasimhan B.

Acta Biomater. 2011 Jul;7(7):2857-64. doi: 10.1016/j.actbio.2011.03.023. Epub 2011 Mar 23.

9.

Tailoring the immune response by targeting C-type lectin receptors on alveolar macrophages using "pathogen-like" amphiphilic polyanhydride nanoparticles.

Chavez-Santoscoy AV, Roychoudhury R, Pohl NL, Wannemuehler MJ, Narasimhan B, Ramer-Tait AE.

Biomaterials. 2012 Jun;33(18):4762-72. doi: 10.1016/j.biomaterials.2012.03.027. Epub 2012 Apr 1.

PMID:
22465338
10.

The simultaneous effect of polymer chemistry and device geometry on the in vitro activation of murine dendritic cells.

Petersen LK, Xue L, Wannemuehler MJ, Rajan K, Narasimhan B.

Biomaterials. 2009 Oct;30(28):5131-42. doi: 10.1016/j.biomaterials.2009.05.069. Epub 2009 Jun 18.

PMID:
19539989
11.

Evaluation of biocompatibility and administration site reactogenicity of polyanhydride-particle-based platform for vaccine delivery.

Huntimer L, Ramer-Tait AE, Petersen LK, Ross KA, Walz KA, Wang C, Hostetter J, Narasimhan B, Wannemuehler MJ.

Adv Healthc Mater. 2013 Feb;2(2):369-78. doi: 10.1002/adhm.201200181. Epub 2012 Sep 26.

PMID:
23184561
12.

Chemistry-dependent adsorption of serum proteins onto polyanhydride microparticles differentially influences dendritic cell uptake and activation.

Carrillo-Conde BR, Ramer-Tait AE, Wannemuehler MJ, Narasimhan B.

Acta Biomater. 2012 Oct;8(10):3618-28. doi: 10.1016/j.actbio.2012.06.001. Epub 2012 Jun 8.

PMID:
22684115
13.

Combinatorial evaluation of in vivo distribution of polyanhydride particle-based platforms for vaccine delivery.

Petersen LK, Huntimer L, Walz K, Ramer-Tait A, Wannemuehler MJ, Narasimhan B.

Int J Nanomedicine. 2013;8:2213-25. doi: 10.2147/IJN.S45317. Epub 2013 Jun 18.

14.

High-throughput synthesis of carbohydrates and functionalization of polyanhydride nanoparticles.

Carrillo-Conde BR, Roychoudhury R, Chavez-Santoscoy AV, Narasimhan B, Pohl NL.

J Vis Exp. 2012 Jul 6;(65). pii: 3967. doi: 10.3791/3967.

15.

Encapsulation into amphiphilic polyanhydride microparticles stabilizes Yersinia pestis antigens.

Carrillo-Conde B, Schiltz E, Yu J, Chris Minion F, Phillips GJ, Wannemuehler MJ, Narasimhan B.

Acta Biomater. 2010 Aug;6(8):3110-9. doi: 10.1016/j.actbio.2010.01.040. Epub 2010 Feb 1.

PMID:
20123135
16.

Yersinia pestis endowed with increased cytotoxicity is avirulent in a bubonic plague model and induces rapid protection against pneumonic plague.

Zauberman A, Tidhar A, Levy Y, Bar-Haim E, Halperin G, Flashner Y, Cohen S, Shafferman A, Mamroud E.

PLoS One. 2009 Jun 16;4(6):e5938. doi: 10.1371/journal.pone.0005938.

17.

Targeting dendritic cells with biomaterials: developing the next generation of vaccines.

Reddy ST, Swartz MA, Hubbell JA.

Trends Immunol. 2006 Dec;27(12):573-9. Epub 2006 Oct 16. Review.

PMID:
17049307
18.

Suppression of endogenous IL-10 gene expression in dendritic cells enhances antigen presentation for specific Th1 induction: potential for cellular vaccine development.

Igietseme JU, Ananaba GA, Bolier J, Bowers S, Moore T, Belay T, Eko FO, Lyn D, Black CM.

J Immunol. 2000 Apr 15;164(8):4212-9.

19.

Nanoparticle delivery systems in cancer vaccines.

Krishnamachari Y, Geary SM, Lemke CD, Salem AK.

Pharm Res. 2011 Feb;28(2):215-36. doi: 10.1007/s11095-010-0241-4. Epub 2010 Aug 19. Review.

20.

A high-throughput microparticle microarray platform for dendritic cell-targeting vaccines.

Acharya AP, Clare-Salzler MJ, Keselowsky BG.

Biomaterials. 2009 Sep;30(25):4168-77. doi: 10.1016/j.biomaterials.2009.04.032. Epub 2009 May 28.

PMID:
19477505
Items per page

Supplemental Content

Write to the Help Desk