Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 232

1.

Reduced Retinal Function in the Absence of Na(v)1.6.

Smith BJ, Côté PD.

PLoS One. 2012;7(2):e31476. doi: 10.1371/journal.pone.0031476.

2.

Contribution of voltage-gated sodium channels to the b-wave of the mammalian flash electroretinogram.

Mojumder DK, Sherry DM, Frishman LJ.

J Physiol. 2008 May 15;586(10):2551-80. doi: 10.1113/jphysiol.2008.150755.

3.

Voltage-gated sodium channel alpha-subunits Na(v)1.1, Na(v)1.2, and Na(v)1.6 in the distal mammalian retina.

Mojumder DK, Frishman LJ, Otteson DC, Sherry DM.

Mol Vis. 2007 Nov 27;13:2163-82.

PMID:
18079688
4.
5.

Voltage-gated sodium channels contribute to the b-wave of the rodent electroretinogram by mediating input to rod bipolar cell GABA(c) receptors.

Smith BJ, Tremblay F, Côté PD.

Exp Eye Res. 2013 Nov;116:279-90. doi: 10.1016/j.exer.2013.09.006.

PMID:
24060343
6.

Age-related changes in Cngb1-X1 knockout mice: prolonged cone survival.

Zhang Y, Rubin GR, Fineberg N, Huisingh C, McGwin G, Pittler SJ, Kraft TW.

Doc Ophthalmol. 2012 Jun;124(3):163-75. doi: 10.1007/s10633-012-9317-2.

PMID:
22367173
7.

ERG OFF response in frog retina: light adaptation and effect of 2-amino-4-phosphonobutyrate.

Popova E, Kupenova P, Vitanova L, Mitova L.

Acta Physiol Scand. 1995 Jul;154(3):377-86.

PMID:
7572235
8.

Contribution of proximal retinal neurons to b- and d-waves of frog electroretinogram under different conditions of light adaptation.

Popova E, Kupenova P.

Vision Res. 2009 Jul;49(15):2001-10. doi: 10.1016/j.visres.2009.05.010.

9.

D1 dopamine receptors modulate cone ON bipolar cell Nav channels to control daily rhythms in photopic vision.

Smith BJ, Côté PD, Tremblay F.

Chronobiol Int. 2015 Feb;32(1):48-58. doi: 10.3109/07420528.2014.951054.

PMID:
25157610
10.

Retinal pathway origins of the pattern ERG of the mouse.

Miura G, Wang MH, Ivers KM, Frishman LJ.

Exp Eye Res. 2009 Jun 15;89(1):49-62. doi: 10.1016/j.exer.2009.02.009.

11.

Characterization of the rod photoresponse isolated from the dark-adapted primate ERG.

Jamison JA, Bush RA, Lei B, Sieving PA.

Vis Neurosci. 2001 May-Jun;18(3):445-55.

PMID:
11497421
12.

Origin of negative potentials in the light-adapted ERG of cat retina.

Frishman LJ, Steinberg RH.

J Neurophysiol. 1990 Jun;63(6):1333-46.

PMID:
2358881
13.

The electroretinogram of the rhodopsin knockout mouse.

Toda K, Bush RA, Humphries P, Sieving PA.

Vis Neurosci. 1999 Mar-Apr;16(2):391-8.

PMID:
10367972
14.

The d-wave of the rod electroretinogram of rat originates in the cone pathway.

Naarendorp F, Williams GE.

Vis Neurosci. 1999 Jan-Feb;16(1):91-105.

PMID:
10022481
15.

Digoxin-induced reversible dysfunction of the cone photoreceptors in monkeys.

Kinoshita J, Iwata N, Kimotsuki T, Yasuda M.

Invest Ophthalmol Vis Sci. 2014 Feb 10;55(2):881-92. doi: 10.1167/iovs.13-13296.

PMID:
24436189
16.

Attenuation of oscillatory potentials in nob2 mice.

Yu M, Peachey NS.

Doc Ophthalmol. 2007 Nov;115(3):173-86.

17.

An adaptive ERG technique to measure normal and altered dark adaptation in the mouse.

DeMarco PJ Jr, Katagiri Y, Enzmann V, Kaplan HJ, McCall MA.

Doc Ophthalmol. 2007 Nov;115(3):155-63.

PMID:
17891429
18.

A distinctive form of congenital stationary night blindness with cone ON-pathway dysfunction.

Barnes CS, Alexander KR, Fishman GA.

Ophthalmology. 2002 Mar;109(3):575-83.

PMID:
11874764
19.
20.

The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods.

Chrysostomou V, Stone J, Stowe S, Barnett NL, Valter K.

Invest Ophthalmol Vis Sci. 2008 Mar;49(3):1116-25. doi: 10.1167/iovs.07-1158.

PMID:
18326739

Supplemental Content

Support Center