Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 251

1.

A cysteine-rich antimicrobial peptide from Pinus monticola (PmAMP1) confers resistance to multiple fungal pathogens in canola (Brassica napus).

Verma SS, Yajima WR, Rahman MH, Shah S, Liu JJ, Ekramoddoullah AK, Kav NN.

Plant Mol Biol. 2012 May;79(1-2):61-74. doi: 10.1007/s11103-012-9895-0. Epub 2012 Feb 21.

PMID:
22351159
2.

Expression of anti-sclerotinia scFv in transgenic Brassica napus enhances tolerance against stem rot.

Yajima W, Verma SS, Shah S, Rahman MH, Liang Y, Kav NN.

N Biotechnol. 2010 Dec 31;27(6):816-21. doi: 10.1016/j.nbt.2010.09.010. Epub 2010 Oct 7.

PMID:
20933110
3.

Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storage roots.

Muramoto N, Tanaka T, Shimamura T, Mitsukawa N, Hori E, Koda K, Otani M, Hirai M, Nakamura K, Imaeda T.

Plant Cell Rep. 2012 Jun;31(6):987-97. doi: 10.1007/s00299-011-1217-5. Epub 2012 Jan 3.

PMID:
22212462
4.

Novel properties of antimicrobial peptide anoplin.

Jindřichová B, Burketová L, Novotná Z.

Biochem Biophys Res Commun. 2014 Feb 21;444(4):520-4. doi: 10.1016/j.bbrc.2014.01.097. Epub 2014 Jan 25.

PMID:
24472551
5.

The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1.

Larkan NJ, Lydiate DJ, Parkin IA, Nelson MN, Epp DJ, Cowling WA, Rimmer SR, Borhan MH.

New Phytol. 2013 Jan;197(2):595-605. doi: 10.1111/nph.12043. Epub 2012 Dec 3.

6.

Identification of QTLs for resistance to sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus.

Wu J, Cai G, Tu J, Li L, Liu S, Luo X, Zhou L, Fan C, Zhou Y.

PLoS One. 2013 Jul 2;8(7):e67740. doi: 10.1371/journal.pone.0067740. Print 2013.

7.

Genomes and transcriptomes of partners in plant-fungal-interactions between canola (Brassica napus) and two Leptosphaeria species.

Lowe RG, Cassin A, Grandaubert J, Clark BL, Van de Wouw AP, Rouxel T, Howlett BJ.

PLoS One. 2014 Jul 28;9(7):e103098. doi: 10.1371/journal.pone.0103098. eCollection 2014.

8.

Anti-microbial peptide (AMP): nucleotide variation, gene expression, and host resistance in the white pine blister rust (WPBR) pathosystem.

Liu JJ, Zamany A, Sniezko RA.

Planta. 2013 Jan;237(1):43-54. doi: 10.1007/s00425-012-1747-2. Epub 2012 Sep 12.

PMID:
22968909
9.

Screening of oxylipins for control of oilseed rape (Brassica napus) fungal pathogens.

Granér G, Hamberg M, Meijer J.

Phytochemistry. 2003 May;63(1):89-95.

PMID:
12657302
10.
11.

Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape.

Wang Z, Mao H, Dong C, Ji R, Cai L, Fu H, Liu S.

Mol Plant Microbe Interact. 2009 Mar;22(3):235-44. doi: 10.1094/MPMI-22-3-0235.

12.

Transgenic Brassica juncea plants expressing MsrA1, a synthetic cationic antimicrobial peptide, exhibit resistance to fungal phytopathogens.

Rustagi A, Kumar D, Shekhar S, Yusuf MA, Misra S, Sarin NB.

Mol Biotechnol. 2014 Jun;56(6):535-45. doi: 10.1007/s12033-013-9727-8.

PMID:
24452332
13.

Antifungal activity of a Pinus monticola antimicrobial peptide 1 (Pm-AMP1) and its accumulation in western white pine infected with Cronartium ribicola.

Zamany A, Liu JJ, Ekramoddoullah A, Sniezko R.

Can J Microbiol. 2011 Aug;57(8):667-79. doi: 10.1139/w11-046. Epub 2011 Aug 8.

PMID:
21823970
14.

EST-based in silico identification and in vitro test of antimicrobial peptides in Brassica napus.

Ke T, Cao H, Huang J, Hu F, Huang J, Dong C, Ma X, Yu J, Mao H, Wang X, Niu Q, Hui F, Liu S.

BMC Genomics. 2015 Sep 2;16:653. doi: 10.1186/s12864-015-1849-x.

15.

Transformation of LTP gene into Brassica napus to enhance its resistance to Sclerotinia sclerotiorum.

Fan Y, Du K, Gao Y, Kong Y, Chu C, Sokolov V, Wang Y.

Genetika. 2013 Apr;49(4):439-47.

PMID:
23866620
16.

Fusion proteins comprising a Fusarium-specific antibody linked to antifungal peptides protect plants against a fungal pathogen.

Peschen D, Li HP, Fischer R, Kreuzaler F, Liao YC.

Nat Biotechnol. 2004 Jun;22(6):732-8. Epub 2004 May 16.

PMID:
15146196
17.

Overexpression of a Brassica nigra cDNA gives enhanced resistance to Leptosphaeria maculans in B. napus.

Wretblad S, Bohman S, Dixelius C.

Mol Plant Microbe Interact. 2003 Jun;16(6):477-84.

18.

Molecular mapping of qualitative and quantitative loci for resistance to Leptosphaeria maculans causing blackleg disease in canola (Brassica napus L.).

Raman R, Taylor B, Marcroft S, Stiller J, Eckermann P, Coombes N, Rehman A, Lindbeck K, Luckett D, Wratten N, Batley J, Edwards D, Wang X, Raman H.

Theor Appl Genet. 2012 Jul;125(2):405-18. doi: 10.1007/s00122-012-1842-6. Epub 2012 Mar 28.

PMID:
22454144
19.

Protection of oilseed rape (Brassica napus) toward fungal pathogens by strains of plant-associated Bacillus amyloliquefaciens.

Danielsson J, Reva O, Meijer J.

Microb Ecol. 2007 Jul;54(1):134-40. Epub 2006 Dec 22.

PMID:
17186140
20.

Identification and characterization of candidate Rlm4 blackleg resistance genes in Brassica napus using next-generation sequencing.

Tollenaere R, Hayward A, Dalton-Morgan J, Campbell E, Lee JR, Lorenc MT, Manoli S, Stiller J, Raman R, Raman H, Edwards D, Batley J.

Plant Biotechnol J. 2012 Aug;10(6):709-15. doi: 10.1111/j.1467-7652.2012.00716.x. Epub 2012 Jun 23.

Items per page

Supplemental Content

Write to the Help Desk