Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 126

1.

Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells.

Mulholland DJ, Kobayashi N, Ruscetti M, Zhi A, Tran LM, Huang J, Gleave M, Wu H.

Cancer Res. 2012 Apr 1;72(7):1878-89. doi: 10.1158/0008-5472.CAN-11-3132. Epub 2012 Feb 20.

2.

In vivo activity of combined PI3K/mTOR and MEK inhibition in a Kras(G12D);Pten deletion mouse model of ovarian cancer.

Kinross KM, Brown DV, Kleinschmidt M, Jackson S, Christensen J, Cullinane C, Hicks RJ, Johnstone RW, McArthur GA.

Mol Cancer Ther. 2011 Aug;10(8):1440-9. doi: 10.1158/1535-7163.MCT-11-0240. Epub 2011 Jun 1.

3.

PTEN loss-mediated Akt activation increases the properties of cancer stem-like cell populations in prostate cancer.

Kim RJ, Bae E, Hong YK, Hong JY, Kim NK, Ahn HJ, Oh JJ, Park DS.

Oncology. 2014;87(5):270-9. doi: 10.1159/000363186. Epub 2014 Aug 15.

PMID:
25139413
4.

Characterizing the contribution of stem/progenitor cells to tumorigenesis in the Pten-/-TP53-/- prostate cancer model.

Abou-Kheir WG, Hynes PG, Martin PL, Pierce R, Kelly K.

Stem Cells. 2010 Dec;28(12):2129-40. doi: 10.1002/stem.538.

5.

Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance.

McCubrey JA, Steelman LS, Abrams SL, Lee JT, Chang F, Bertrand FE, Navolanic PM, Terrian DM, Franklin RA, D'Assoro AB, Salisbury JL, Mazzarino MC, Stivala F, Libra M.

Adv Enzyme Regul. 2006;46:249-79. Epub 2006 Jul 18.

PMID:
16854453
6.

Ran is a potential therapeutic target for cancer cells with molecular changes associated with activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways.

Yuen HF, Chan KK, Grills C, Murray JT, Platt-Higgins A, Eldin OS, O'Byrne K, Janne P, Fennell DA, Johnston PG, Rudland PS, El-Tanani M.

Clin Cancer Res. 2012 Jan 15;18(2):380-91. doi: 10.1158/1078-0432.CCR-11-2035. Epub 2011 Nov 16.

7.
8.

Sprouty2, PTEN, and PP2A interact to regulate prostate cancer progression.

Patel R, Gao M, Ahmad I, Fleming J, Singh LB, Rai TS, McKie AB, Seywright M, Barnetson RJ, Edwards J, Sansom OJ, Leung HY.

J Clin Invest. 2013 Mar;123(3):1157-75. doi: 10.1172/JCI63672. Epub 2013 Feb 22.

9.

PTEN deficiency is fully penetrant for prostate adenocarcinoma in C57BL/6 mice via mTOR-dependent growth.

Blando J, Portis M, Benavides F, Alexander A, Mills G, Dave B, Conti CJ, Kim J, Walker CL.

Am J Pathol. 2009 May;174(5):1869-79. doi: 10.2353/ajpath.2009.080055.

10.

Activation of Akt signaling in prostate induces a TGFβ-mediated restraint on cancer progression and metastasis.

Bjerke GA, Yang CS, Frierson HF, Paschal BM, Wotton D.

Oncogene. 2014 Jul 10;33(28):3660-7. doi: 10.1038/onc.2013.342. Epub 2013 Sep 2.

11.

Prostate epithelial Pten/TP53 loss leads to transformation of multipotential progenitors and epithelial to mesenchymal transition.

Martin P, Liu YN, Pierce R, Abou-Kheir W, Casey O, Seng V, Camacho D, Simpson RM, Kelly K.

Am J Pathol. 2011 Jul;179(1):422-35. doi: 10.1016/j.ajpath.2011.03.035. Epub 2011 May 13.

12.

Molecular aspects of gefitinib antiproliferative and pro-apoptotic effects in PTEN-positive and PTEN-negative prostate cancer cell lines.

Festuccia C, Muzi P, Millimaggi D, Biordi L, Gravina GL, Speca S, Angelucci A, Dolo V, Vicentini C, Bologna M.

Endocr Relat Cancer. 2005 Dec;12(4):983-98.

13.

Eupafolin suppresses prostate cancer by targeting phosphatidylinositol 3-kinase-mediated Akt signaling.

Liu K, Park C, Chen H, Hwang J, Thimmegowda NR, Bae EY, Lee KW, Kim HG, Liu H, Soung NK, Peng C, Jang JH, Kim KE, Ahn JS, Bode AM, Dong Z, Kim BY, Dong Z.

Mol Carcinog. 2015 Sep;54(9):751-60. doi: 10.1002/mc.22139. Epub 2014 Apr 4.

14.

Rit, a non-lipid-modified Ras-related protein, transforms NIH3T3 cells without activating the ERK, JNK, p38 MAPK or PI3K/Akt pathways.

Rusyn EV, Reynolds ER, Shao H, Grana TM, Chan TO, Andres DA, Cox AD.

Oncogene. 2000 Sep 28;19(41):4685-94.

15.

PTEN loss accelerates KrasG12D-induced pancreatic cancer development.

Hill R, Calvopina JH, Kim C, Wang Y, Dawson DW, Donahue TR, Dry S, Wu H.

Cancer Res. 2010 Sep 15;70(18):7114-24. doi: 10.1158/0008-5472.CAN-10-1649. Epub 2010 Aug 31.

16.

Akt in prostate cancer: possible role in androgen-independence.

Ghosh PM, Malik S, Bedolla R, Kreisberg JI.

Curr Drug Metab. 2003 Dec;4(6):487-96. Review.

PMID:
14683476
17.

PTEN dosage is essential for neurofibroma development and malignant transformation.

Gregorian C, Nakashima J, Dry SM, Nghiemphu PL, Smith KB, Ao Y, Dang J, Lawson G, Mellinghoff IK, Mischel PS, Phelps M, Parada LF, Liu X, Sofroniew MV, Eilber FC, Wu H.

Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19479-84. doi: 10.1073/pnas.0910398106. Epub 2009 Oct 21.

18.

MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer.

Xia H, Ooi LL, Hui KM.

Hepatology. 2013 Aug;58(2):629-41. doi: 10.1002/hep.26369. Epub 2013 Jun 25.

PMID:
23471579
19.

SOX4 Is Essential for Prostate Tumorigenesis Initiated by PTEN Ablation.

Bilir B, Osunkoya AO, Wiles WG 4th, Sannigrahi S, Lefebvre V, Metzger D, Spyropoulos DD, Martin WD, Moreno CS.

Cancer Res. 2016 Mar 1;76(5):1112-21. doi: 10.1158/0008-5472.CAN-15-1868. Epub 2015 Dec 23.

20.

Plumbagin Inhibits Prostate Carcinogenesis in Intact and Castrated PTEN Knockout Mice via Targeting PKCε, Stat3, and Epithelial-to-Mesenchymal Transition Markers.

Hafeez BB, Fischer JW, Singh A, Zhong W, Mustafa A, Meske L, Sheikhani MO, Verma AK.

Cancer Prev Res (Phila). 2015 May;8(5):375-86. doi: 10.1158/1940-6207.CAPR-14-0231. Epub 2015 Jan 27.

Supplemental Content

Support Center