Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 316

1.

Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae.

Kondo T, Tezuka H, Ishii J, Matsuda F, Ogino C, Kondo A.

J Biotechnol. 2012 May 31;159(1-2):32-7. doi: 10.1016/j.jbiotec.2012.01.022. Epub 2012 Feb 9.

PMID:
22342368
2.

Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes.

Lee WH, Seo SO, Bae YH, Nan H, Jin YS, Seo JH.

Bioprocess Biosyst Eng. 2012 Nov;35(9):1467-75. doi: 10.1007/s00449-012-0736-y. Epub 2012 Apr 28.

PMID:
22543927
3.

Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae.

Yu KO, Jung J, Ramzi AB, Kim SW, Park C, Han SO.

Appl Biochem Biotechnol. 2012 Feb;166(4):856-65. doi: 10.1007/s12010-011-9475-9. Epub 2011 Dec 13.

PMID:
22161213
4.

Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene.

Tokuhiro K, Ishida N, Nagamori E, Saitoh S, Onishi T, Kondo A, Takahashi H.

Appl Microbiol Biotechnol. 2009 Apr;82(5):883-90. doi: 10.1007/s00253-008-1831-5. Epub 2009 Jan 3.

PMID:
19122995
5.

Use of the valine biosynthetic pathway to convert glucose into isobutanol.

Savrasova EA, Kivero AD, Shakulov RS, Stoynova NV.

J Ind Microbiol Biotechnol. 2011 Sep;38(9):1287-94. doi: 10.1007/s10295-010-0907-2. Epub 2010 Dec 15.

PMID:
21161324
6.

[Modification of carbon flux in Sacchromyces cerevisiae to improve L-lactic acid production].

Zhao L, Wang J, Zhou J, Liu L, Du G, Chen J.

Wei Sheng Wu Xue Bao. 2011 Jan;51(1):50-8. Chinese.

PMID:
21465789
7.

Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability.

Toivari MH, Aristidou A, Ruohonen L, Penttilä M.

Metab Eng. 2001 Jul;3(3):236-49.

PMID:
11461146
8.

Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol.

Park SH, Kim S, Hahn JS.

Appl Microbiol Biotechnol. 2014 Nov;98(21):9139-47. doi: 10.1007/s00253-014-6081-0. Epub 2014 Oct 4.

PMID:
25280745
9.

Overexpressing enzymes of the Ehrlich pathway and deleting genes of the competing pathway in Saccharomyces cerevisiae for increasing 2-phenylethanol production from glucose.

Shen L, Nishimura Y, Matsuda F, Ishii J, Kondo A.

J Biosci Bioeng. 2016 Jul;122(1):34-9. doi: 10.1016/j.jbiosc.2015.12.022. Epub 2016 Mar 11.

PMID:
26975754
10.

Eliminating the isoleucine biosynthetic pathway to reduce competitive carbon outflow during isobutanol production by Saccharomyces cerevisiae.

Ida K, Ishii J, Matsuda F, Kondo T, Kondo A.

Microb Cell Fact. 2015 Apr 29;14:62. doi: 10.1186/s12934-015-0240-6.

11.
12.

Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion.

Turner TL, Zhang GC, Kim SR, Subramaniam V, Steffen D, Skory CD, Jang JY, Yu BJ, Jin YS.

Appl Microbiol Biotechnol. 2015 Oct;99(19):8023-33. doi: 10.1007/s00253-015-6701-3. Epub 2015 Jun 6.

PMID:
26043971
13.

Pyruvate decarboxylase catalyzes decarboxylation of branched-chain 2-oxo acids but is not essential for fusel alcohol production by Saccharomyces cerevisiae.

ter Schure EG, Flikweert MT, van Dijken JP, Pronk JT, Verrips CT.

Appl Environ Microbiol. 1998 Apr;64(4):1303-7.

14.

Optimization of metabolic pathways for bioconversion of lignocellulose to ethanol through genetic engineering.

Chen J, Zhang W, Tan L, Wang Y, He G.

Biotechnol Adv. 2009 Sep-Oct;27(5):593-8. doi: 10.1016/j.biotechadv.2009.04.021. Epub 2009 May 3.

PMID:
19401227
15.

Engineering a metabolic pathway for isobutanol biosynthesis in Bacillus subtilis.

Jia X, Li S, Xie S, Wen J.

Appl Biochem Biotechnol. 2012 Sep;168(1):1-9. Epub 2011 May 3.

PMID:
21537892
16.

Construction of an artificial pathway for isobutanol biosynthesis in the cytosol of Saccharomyces cerevisiae.

Matsuda F, Kondo T, Ida K, Tezuka H, Ishii J, Kondo A.

Biosci Biotechnol Biochem. 2012;76(11):2139-41. Epub 2012 Nov 7.

17.

The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L-lactic acid production.

Ishida N, Saitoh S, Onishi T, Tokuhiro K, Nagamori E, Kitamoto K, Takahashi H.

Biosci Biotechnol Biochem. 2006 May;70(5):1148-53.

18.

Isobutanol production from D-xylose by recombinant Saccharomyces cerevisiae.

Brat D, Boles E.

FEMS Yeast Res. 2013 Mar;13(2):241-4. doi: 10.1111/1567-1364.12028. Epub 2013 Jan 16.

19.

An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae.

Dickinson JR, Harrison SJ, Hewlins MJ.

J Biol Chem. 1998 Oct 2;273(40):25751-6.

20.

Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression.

Li S, Wen J, Jia X.

Appl Microbiol Biotechnol. 2011 Aug;91(3):577-89. doi: 10.1007/s00253-011-3280-9. Epub 2011 Apr 28.

PMID:
21533914

Supplemental Content

Support Center