Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 86

1.

Potential of fragment recombination for rational design of proteins.

Eisenbeis S, Proffitt W, Coles M, Truffault V, Shanmugaratnam S, Meiler J, Höcker B.

J Am Chem Soc. 2012 Mar 7;134(9):4019-22. doi: 10.1021/ja211657k. Epub 2012 Feb 23.

PMID:
22329686
2.

Engineering chimaeric proteins from fold fragments: 'hopeful monsters' in protein design.

Höcker B.

Biochem Soc Trans. 2013 Oct;41(5):1137-40. doi: 10.1042/BST20130099. Review.

PMID:
24059498
3.

A highly stable protein chimera built from fragments of different folds.

Shanmugaratnam S, Eisenbeis S, Höcker B.

Protein Eng Des Sel. 2012 Nov;25(11):699-703. doi: 10.1093/protein/gzs074. Epub 2012 Oct 18.

PMID:
23081840
4.

The structure of a truncated phosphoribosylanthranilate isomerase suggests a unified model for evolution of the (βα)8 barrel fold.

Setiyaputra S, Mackay JP, Patrick WM.

J Mol Biol. 2011 Apr 29;408(2):291-303. doi: 10.1016/j.jmb.2011.02.048. Epub 2011 Feb 25.

PMID:
21354426
5.

Design of chimeric proteins by combination of subdomain-sized fragments.

Rico JA, Höcker B.

Methods Enzymol. 2013;523:389-405. doi: 10.1016/B978-0-12-394292-0.00018-7.

PMID:
23422440
6.

Computational protein design: a novel path to future protein drugs.

Rosenberg M, Goldblum A.

Curr Pharm Des. 2006;12(31):3973-97. Review.

PMID:
17100608
7.

A beta alpha-barrel built by the combination of fragments from different folds.

Bharat TA, Eisenbeis S, Zeth K, Höcker B.

Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9942-7. doi: 10.1073/pnas.0802202105. Epub 2008 Jul 15.

8.

Conservation of the folding mechanism between designed primordial (βα)8-barrel proteins and their modern descendant.

Carstensen L, Sperl JM, Bocola M, List F, Schmid FX, Sterner R.

J Am Chem Soc. 2012 Aug 1;134(30):12786-91. doi: 10.1021/ja304951v. Epub 2012 Jul 19.

PMID:
22758610
9.

A rapid test for identification of autonomous folding units in proteins.

Fischer KF, Marqusee S.

J Mol Biol. 2000 Sep 22;302(3):701-12.

PMID:
10986128
10.

Using multi-objective computational design to extend protein promiscuity.

Suarez M, Tortosa P, Garcia-Mira MM, Rodríguez-Larrea D, Godoy-Ruiz R, Ibarra-Molero B, Sanchez-Ruiz JM, Jaramillo A.

Biophys Chem. 2010 Mar;147(1-2):13-9. doi: 10.1016/j.bpc.2009.12.003. Epub 2010 Jan 19.

PMID:
20034725
11.

Alternative splice variants in TIM barrel proteins from human genome correlate with the structural and evolutionary modularity of this versatile protein fold.

Ochoa-Leyva A, Montero-Morán G, Saab-Rincón G, Brieba LG, Soberón X.

PLoS One. 2013 Aug 12;8(8):e70582. doi: 10.1371/journal.pone.0070582. eCollection 2013.

12.

A fast and precise approach for computational saturation mutagenesis and its experimental validation by using an artificial (βα)8-barrel protein.

Fischer A, Seitz T, Lochner A, Sterner R, Merkl R, Bocola M.

Chembiochem. 2011 Jul 4;12(10):1544-50. doi: 10.1002/cbic.201100051. Epub 2011 May 30.

PMID:
21626637
13.

Mis-translation of a computationally designed protein yields an exceptionally stable homodimer: implications for protein engineering and evolution.

Dantas G, Watters AL, Lunde BM, Eletr ZM, Isern NG, Roseman T, Lipfert J, Doniach S, Tompa M, Kuhlman B, Stoddard BL, Varani G, Baker D.

J Mol Biol. 2006 Oct 6;362(5):1004-24. Epub 2006 Aug 4.

PMID:
16949611
14.

Design of a novel globular protein fold with atomic-level accuracy.

Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D.

Science. 2003 Nov 21;302(5649):1364-8.

15.

Design of proteins from smaller fragments-learning from evolution.

Höcker B.

Curr Opin Struct Biol. 2014 Aug;27:56-62. doi: 10.1016/j.sbi.2014.04.007. Epub 2014 May 25. Review.

PMID:
24865156
16.

Computational design of a biologically active enzyme.

Dwyer MA, Looger LL, Hellinga HW.

Science. 2004 Jun 25;304(5679):1967-71. Retraction in: Dwyer MA, Looger LL, Hellinga HW. Science. 2008 Feb 1;319(5863):569.

17.

Computational design of intermolecular stability and specificity in protein self-assembly.

Nanda V, Zahid S, Xu F, Levine D.

Methods Enzymol. 2011;487:575-93. doi: 10.1016/B978-0-12-381270-4.00020-2.

PMID:
21187239
18.

Progress in computational protein design.

Lippow SM, Tidor B.

Curr Opin Biotechnol. 2007 Aug;18(4):305-11. Epub 2007 Jul 20. Review.

19.

Effective scoring function for protein sequence design.

Liang S, Grishin NV.

Proteins. 2004 Feb 1;54(2):271-81.

PMID:
14696189
20.

Computational design of high-affinity epitope scaffolds by backbone grafting of a linear epitope.

Azoitei ML, Ban YE, Julien JP, Bryson S, Schroeter A, Kalyuzhniy O, Porter JR, Adachi Y, Baker D, Pai EF, Schief WR.

J Mol Biol. 2012 Jan 6;415(1):175-92. doi: 10.1016/j.jmb.2011.10.003. Epub 2011 Oct 31.

PMID:
22061265

Supplemental Content

Support Center