Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 92

1.

Radiolabeled Zn-DPA as a potential infection imaging agent.

Liu X, Cheng D, Gray BD, Wang Y, Akalin A, Rusckowski M, Pak KY, Hnatowich DJ.

Nucl Med Biol. 2012 Jul;39(5):709-14. doi: 10.1016/j.nucmedbio.2011.12.006.

PMID:
22321532
2.

Evaluation of [¹¹¹In]-labeled zinc-dipicolylamine tracers for SPECT imaging of bacterial infection.

Rice DR, Plaunt AJ, Turkyilmaz S, Smith M, Wang Y, Rusckowski M, Smith BD.

Mol Imaging Biol. 2015 Apr;17(2):204-13. doi: 10.1007/s11307-014-0758-8.

3.

Characterization of (18)F-dipicolylamine (DPA) derivatives in cells infected with influenza virus.

Li J, Gerlach RL, Jonsson CB, Gray BD, Pak KY, Ng CK.

Nucl Med Biol. 2015 Mar;42(3):283-91. doi: 10.1016/j.nucmedbio.2014.11.012.

PMID:
25537726
4.

Radiolabeled affibody-albumin bioconjugates for HER2-positive cancer targeting.

Hoppmann S, Miao Z, Liu S, Liu H, Ren G, Bao A, Cheng Z.

Bioconjug Chem. 2011 Mar 16;22(3):413-21. doi: 10.1021/bc100432h.

5.

Optical imaging of articular cartilage degeneration using near-infrared dipicolylamine probes.

Hu X, Wang Q, Liu Y, Liu H, Qin C, Cheng K, Robinson W, Gray BD, Pak KY, Yu A, Cheng Z.

Biomaterials. 2014 Aug;35(26):7511-21. doi: 10.1016/j.biomaterials.2014.05.042.

PMID:
24912814
6.

Optical imaging of mammary and prostate tumors in living animals using a synthetic near infrared zinc(II)-dipicolylamine probe for anionic cell surfaces.

Smith BA, Akers WJ, Leevy WM, Lampkins AJ, Xiao S, Wolter W, Suckow MA, Achilefu S, Smith BD.

J Am Chem Soc. 2010 Jan 13;132(1):67-9. doi: 10.1021/ja908467y.

7.

Optical imaging of bacterial infection in living mice using a fluorescent near-infrared molecular probe.

Leevy WM, Gammon ST, Jiang H, Johnson JR, Maxwell DJ, Jackson EN, Marquez M, Piwnica-Worms D, Smith BD.

J Am Chem Soc. 2006 Dec 27;128(51):16476-7.

8.

Radioimmunotherapy of A431 xenografted mice with pretargeted B3 antibody-streptavidin and (90)Y-labeled 1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetraacetic acid (DOTA)-biotin.

Yao Z, Zhang M, Axworthy DB, Wong KJ, Garmestani K, Park L, Park CW, Mallett RW, Theodore LJ, Yau EK, Waldmann TA, Brechbiel MW, Paik CH, Pastan I, Carrasquillo JA.

Cancer Res. 2002 Oct 15;62(20):5755-60.

9.

Preclinical evaluation of 68Ga-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid-ubiquicidin as a radioligand for PET infection imaging.

Ebenhan T, Zeevaart JR, Venter JD, Govender T, Kruger GH, Jarvis NV, Sathekge MM.

J Nucl Med. 2014 Feb;55(2):308-14. doi: 10.2967/jnumed.113.128397.

10.

A selective fluorescent chemosensor for phosphoserine.

Cooley CM, Hettie KS, Klockow JL, Garrison S, Glass TE.

Org Biomol Chem. 2013 Nov 14;11(42):7387-92. doi: 10.1039/c3ob41677a.

PMID:
24065122
11.

Position for site-specific attachment of a DOTA chelator to synthetic affibody molecules has a different influence on the targeting properties of 68Ga- compared to 111in-labeled conjugates.

Honarvar H, Strand J, Perols A, Orlova A, Selvaraju RK, Eriksson Karlström A, Tolmachev V.

Mol Imaging. 2014;13. doi: 10.2310/7290.2014.00034.

PMID:
25249017
12.

Deep-red fluorescent imaging probe for bacteria.

White AG, Gray BD, Pak KY, Smith BD.

Bioorg Med Chem Lett. 2012 Apr 15;22(8):2833-6. doi: 10.1016/j.bmcl.2012.02.078.

13.

Positron emission tomography based analysis of long-circulating cross-linked triblock polymeric micelles in a U87MG mouse xenograft model and comparison of DOTA and CB-TE2A as chelators of copper-64.

Jensen AI, Binderup T, Kumar EK P, Kjær A, Rasmussen PH, Andresen TL.

Biomacromolecules. 2014 May 12;15(5):1625-33. doi: 10.1021/bm401871w.

PMID:
24645913
14.

In vivo evaluation of pretargeted 64Cu for tumor imaging and therapy.

Lewis MR, Wang M, Axworthy DB, Theodore LJ, Mallet RW, Fritzberg AR, Welch MJ, Anderson CJ.

J Nucl Med. 2003 Aug;44(8):1284-92.

15.

PET and SPECT imaging of a radiolabeled minigastrin analogue conjugated with DOTA, NOTA, and NODAGA and labeled with (64)Cu, (68)Ga, and (111)In.

Roosenburg S, Laverman P, Joosten L, Cooper MS, Kolenc-Peitl PK, Foster JM, Hudson C, Leyton J, Burnet J, Oyen WJ, Blower PJ, Mather SJ, Boerman OC, Sosabowski JK.

Mol Pharm. 2014 Nov 3;11(11):3930-7. doi: 10.1021/mp500283k.

PMID:
24992368
16.

Comparative uptake of ¹⁸F-FEN-DPAZn2, ¹⁸F-FECH, ¹⁸F-fluoride, and ¹⁸F-FDG in fibrosarcoma and aseptic inflammation.

Liang X, Tang G, Wang H, Hu K, Tang X, Nie D, Sun T, Huang T.

Appl Radiat Isot. 2014 Aug;90:158-64. doi: 10.1016/j.apradiso.2014.03.030.

PMID:
24751349
17.

Imaging vascular endothelial growth factor (VEGF) receptors in turpentine-induced sterile thigh abscesses with radiolabeled single-chain VEGF.

Levashova Z, Backer M, Backer JM, Blankenberg FG.

J Nucl Med. 2009 Dec;50(12):2058-63. doi: 10.2967/jnumed.109.068023.

18.

A comparative uptake study of multiplexed PET tracers in mice with turpentine-induced inflammation.

Huang T, Wang H, Tang G, Liang X, Nie D, Yi C, Wu K.

Molecules. 2012 Nov 26;17(12):13948-59. doi: 10.3390/molecules171213948.

19.

In vivo imaging of brain infarct with the novel fluorescent probe PSVue 794 in a rat middle cerebral artery occlusion-reperfusion model.

Chu C, Huang X, Chen CT, Zhao Y, Luo JJ, Gray BD, Pak KY, Dun NJ.

Mol Imaging. 2013 Jan-Feb;12(1):8-16.

PMID:
23348787
20.

Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots.

Chen K, Li ZB, Wang H, Cai W, Chen X.

Eur J Nucl Med Mol Imaging. 2008 Dec;35(12):2235-44. doi: 10.1007/s00259-008-0860-8.

PMID:
18566815
Items per page

Supplemental Content

Support Center