Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 180

1.

Development of a semi-automated method for mitral valve modeling with medial axis representation using 3D ultrasound.

Pouch AM, Yushkevich PA, Jackson BM, Jassar AS, Vergnat M, Gorman JH, Gorman RC, Sehgal CM.

Med Phys. 2012 Feb;39(2):933-50. doi: 10.1118/1.3673773.

2.

Fully automatic segmentation of the mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas joint label fusion and deformable medial modeling.

Pouch AM, Wang H, Takabe M, Jackson BM, Gorman JH 3rd, Gorman RC, Yushkevich PA, Sehgal CM.

Med Image Anal. 2014 Jan;18(1):118-29. doi: 10.1016/j.media.2013.10.001.

3.

Medially constrained deformable modeling for segmentation of branching medial structures: Application to aortic valve segmentation and morphometry.

Pouch AM, Tian S, Takebe M, Yuan J, Gorman R Jr, Cheung AT, Wang H, Jackson BM, Gorman JH 3rd, Gorman RC, Yushkevich PA.

Med Image Anal. 2015 Dec;26(1):217-31. doi: 10.1016/j.media.2015.09.003.

4.

Statistical assessment of normal mitral annular geometry using automated three-dimensional echocardiographic analysis.

Pouch AM, Vergnat M, McGarvey JR, Ferrari G, Jackson BM, Sehgal CM, Yushkevich PA, Gorman RC, Gorman JH 3rd.

Ann Thorac Surg. 2014 Jan;97(1):71-7. doi: 10.1016/j.athoracsur.2013.07.096.

5.

Semi-automated segmentation and quantification of mitral annulus and leaflets from transesophageal 3-D echocardiographic images.

Sotaquira M, Pepi M, Fusini L, Maffessanti F, Lang RM, Caiani EG.

Ultrasound Med Biol. 2015 Jan;41(1):251-67. doi: 10.1016/j.ultrasmedbio.2014.09.001.

PMID:
25444692
6.

Semi-automated mitral valve morphometry and computational stress analysis using 3D ultrasound.

Pouch AM, Xu C, Yushkevich PA, Jassar AS, Vergnat M, Gorman JH 3rd, Gorman RC, Sehgal CM, Jackson BM.

J Biomech. 2012 Mar 15;45(5):903-7. doi: 10.1016/j.jbiomech.2011.11.033.

7.

Automated segmentation and geometrical modeling of the tricuspid aortic valve in 3D echocardiographic images.

Pouch AM, Wang H, Takabe M, Jackson BM, Sehgal CM, Gorman JH 3rd, Gorman RC, Yushkevich PA.

Med Image Comput Comput Assist Interv. 2013;16(Pt 1):485-92.

8.

Fully automatic detection of salient features in 3-d transesophageal images.

Curiale AH, Haak A, Vegas-Sánchez-Ferrero G, Ren B, Aja-Fernández S, Bosch JG.

Ultrasound Med Biol. 2014 Dec;40(12):2868-84. doi: 10.1016/j.ultrasmedbio.2014.07.014.

PMID:
25308940
9.

Mitral annulus segmentation from four-dimensional ultrasound using a valve state predictor and constrained optical flow.

Schneider RJ, Perrin DP, Vasilyev NV, Marx GR, del Nido PJ, Howe RD.

Med Image Anal. 2012 Feb;16(2):497-504. doi: 10.1016/j.media.2011.11.006.

10.

Patient-specific mitral valve closure prediction using 3D echocardiography.

Burlina P, Sprouse C, Mukherjee R, DeMenthon D, Abraham T.

Ultrasound Med Biol. 2013 May;39(5):769-83. doi: 10.1016/j.ultrasmedbio.2012.11.009.

11.

Asymmetric versus symmetric tethering patterns in ischemic mitral regurgitation: geometric differences from three-dimensional transesophageal echocardiography.

Zeng X, Nunes MC, Dent J, Gillam L, Mathew JP, Gammie JS, Ascheim DD, Moquete E, Hung J.

J Am Soc Echocardiogr. 2014 Apr;27(4):367-75. doi: 10.1016/j.echo.2014.01.006.

PMID:
24513242
12.

Dynamic change of mitral annular geometry and motion in ischemic mitral regurgitation assessed by a computerized 3D echo method.

Daimon M, Saracino G, Fukuda S, Koyama Y, Kwan J, Song JM, Agler DA, Gillinov AM, Thomas JD, Shiota T.

Echocardiography. 2010 Oct;27(9):1069-77. doi: 10.1111/j.1540-8175.2010.01204.x.

PMID:
20546009
13.

A three-dimensional insight into the complexity of flow convergence in mitral regurgitation: adjunctive benefit of anatomic regurgitant orifice area.

Chandra S, Salgo IS, Sugeng L, Weinert L, Settlemier SH, Mor-Avi V, Lang RM.

Am J Physiol Heart Circ Physiol. 2011 Sep;301(3):H1015-24. doi: 10.1152/ajpheart.00275.2011.

14.

Direct measurement of proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography in mitral regurgitation: a validation study.

de Agustín JA, Marcos-Alberca P, Fernandez-Golfin C, Gonçalves A, Feltes G, Nuñez-Gil IJ, Almeria C, Rodrigo JL, Perez de Isla L, Macaya C, Zamorano J.

J Am Soc Echocardiogr. 2012 Aug;25(8):815-23. doi: 10.1016/j.echo.2012.05.021.

PMID:
22739217
15.

Dynamic annular geometry and function in patients with mitral regurgitation: insight from three-dimensional annular tracking.

Little SH, Ben Zekry S, Lawrie GM, Zoghbi WA.

J Am Soc Echocardiogr. 2010 Aug;23(8):872-9. doi: 10.1016/j.echo.2010.06.001.

PMID:
20659666
16.

Mitral annular geometry in normal and myxomatous mitral valves: three-dimensional transesophageal echocardiographic quantification.

Moustafa SE, Mookadam F, Alharthi M, Kansal M, Bansal RC, Chandrasekaran K.

J Heart Valve Dis. 2012 May;21(3):299-310.

PMID:
22808829
17.

Three-dimensional ultrasound of carotid atherosclerosis: semiautomated segmentation using a level set-based method.

Ukwatta E, Awad J, Ward AD, Buchanan D, Samarabandu J, Parraga G, Fenster A.

Med Phys. 2011 May;38(5):2479-93.

PMID:
21776783
18.

Visualization and measurement of mitral valve chordae tendineae using three-dimensional transesophageal echocardiography from the transgastric approach.

Obase K, Jeevanandam V, Saito K, Kesner K, Barry A, Hollatz A, Farooqui F, Addetia K, Roberts JD, Ota T, Balkhy HH, Yoshida K, Mor-Avi V, Lang RM.

J Am Soc Echocardiogr. 2015 Apr;28(4):449-54. doi: 10.1016/j.echo.2015.01.015.

PMID:
25690999
19.

Four-dimensional modelling of the mitral valve by real-time 3D transoesophageal echocardiography: proof of concept.

Noack T, Mukherjee C, Kiefer P, Emrich F, Vollroth M, Ionasec RI, Voigt I, Houle H, Ender J, Misfeld M, Mohr FW, Seeburger J.

Interact Cardiovasc Thorac Surg. 2015 Feb;20(2):200-8. doi: 10.1093/icvts/ivu357.

PMID:
25362240
20.

Quantification of mitral regurgitation by general imaging three-dimensional quantification: feasibility and accuracy.

Wang W, Lin Q, Wu W, Jiang Y, Lan T, Wang H.

J Am Soc Echocardiogr. 2014 Mar;27(3):268-76. doi: 10.1016/j.echo.2013.11.015.

PMID:
24438748
Items per page

Supplemental Content

Support Center