Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 85

1.

Learning to select actions with spiking neurons in the Basal Ganglia.

Stewart TC, Bekolay T, Eliasmith C.

Front Neurosci. 2012 Jan 31;6:2. doi: 10.3389/fnins.2012.00002. eCollection 2012.

2.
3.

Decision making under uncertainty: a neural model based on partially observable markov decision processes.

Rao RP.

Front Comput Neurosci. 2010 Nov 24;4:146. doi: 10.3389/fncom.2010.00146. eCollection 2010.

4.

Integration of reinforcement learning and optimal decision-making theories of the basal ganglia.

Bogacz R, Larsen T.

Neural Comput. 2011 Apr;23(4):817-51. doi: 10.1162/NECO_a_00103. Epub 2011 Jan 11.

PMID:
21222528
5.

Spike-based reinforcement learning in continuous state and action space: when policy gradient methods fail.

Vasilaki E, Frémaux N, Urbanczik R, Senn W, Gerstner W.

PLoS Comput Biol. 2009 Dec;5(12):e1000586. doi: 10.1371/journal.pcbi.1000586. Epub 2009 Dec 4. Erratum in: PLoS Comput Biol. 2009 Dec;5(12). doi: 10.1371/annotation/307ea250-3792-4ceb-b905-162d86c96baf.

6.

A spiking Basal Ganglia model of synchrony, exploration and decision making.

Mandali A, Rengaswamy M, Chakravarthy VS, Moustafa AA.

Front Neurosci. 2015 May 27;9:191. doi: 10.3389/fnins.2015.00191. eCollection 2015.

7.

Neurophysiology and cognitive functions of the striatum.

Rolls ET.

Rev Neurol (Paris). 1994 Aug-Sep;150(8-9):648-60.

PMID:
7754303
8.

Anticipatory reward signals in ventral striatal neurons of behaving rats.

Khamassi M, Mulder AB, Tabuchi E, Douchamps V, Wiener SI.

Eur J Neurosci. 2008 Nov;28(9):1849-66. doi: 10.1111/j.1460-9568.2008.06480.x.

PMID:
18973599
9.

Dopamine-signaled reward predictions generated by competitive excitation and inhibition in a spiking neural network model.

Chorley P, Seth AK.

Front Comput Neurosci. 2011 May 18;5:21. doi: 10.3389/fncom.2011.00021. eCollection 2011.

10.

A spiking neural network based on the basal ganglia functional anatomy.

Baladron J, Hamker FH.

Neural Netw. 2015 Jul;67:1-13. doi: 10.1016/j.neunet.2015.03.002. Epub 2015 Mar 24.

PMID:
25863288
11.

[Decision-making and learning by cortico-basal ganglia network].

Hikosaka O.

Brain Nerve. 2008 Jul;60(7):799-813. Review. Japanese.

PMID:
18646620
12.

Functional Relevance of Different Basal Ganglia Pathways Investigated in a Spiking Model with Reward Dependent Plasticity.

Berthet P, Lindahl M, Tully PJ, Hellgren-Kotaleski J, Lansner A.

Front Neural Circuits. 2016 Jul 21;10:53. doi: 10.3389/fncir.2016.00053. eCollection 2016.

13.
14.

Considerations upon the anatomical model of reward-based learning in the basal ganglia.

Rosell A, Giménez Amaya JM.

Med Hypotheses. 2000 Mar;54(3):397-9.

PMID:
10783473
15.

The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward.

Humphries MD, Prescott TJ.

Prog Neurobiol. 2010 Apr;90(4):385-417. doi: 10.1016/j.pneurobio.2009.11.003. Epub 2009 Nov 24. Review.

PMID:
19941931
16.

The role of prediction and outcomes in adaptive cognitive control.

Schiffer AM, Waszak F, Yeung N.

J Physiol Paris. 2015 Feb-Jun;109(1-3):38-52. doi: 10.1016/j.jphysparis.2015.02.001. Epub 2015 Feb 17. Review.

PMID:
25698177
17.

Reward-dependent learning in neuronal networks for planning and decision making.

Dehaene S, Changeux JP.

Prog Brain Res. 2000;126:217-29. Review.

PMID:
11105649
18.

Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.

Hollerman JR, Tremblay L, Schultz W.

Prog Brain Res. 2000;126:193-215. Review.

PMID:
11105648
19.

Neural systems for control of voluntary action--a hypothesis.

Hikosaka O.

Adv Biophys. 1998;35:81-102. Review.

PMID:
9949766
20.

Fast-spiking interneurons of the rat ventral striatum: temporal coordination of activity with principal cells and responsiveness to reward.

Lansink CS, Goltstein PM, Lankelma JV, Pennartz CM.

Eur J Neurosci. 2010 Aug;32(3):494-508. doi: 10.1111/j.1460-9568.2010.07293.x.

PMID:
20704595

Supplemental Content

Support Center