Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 289

1.

Consensus embedding: theory, algorithms and application to segmentation and classification of biomedical data.

Viswanath S, Madabhushi A.

BMC Bioinformatics. 2012 Feb 8;13:26. doi: 10.1186/1471-2105-13-26.

2.

Enhanced Multi-Protocol Analysis via Intelligent Supervised Embedding (EMPrAvISE): Detecting Prostate Cancer on Multi-Parametric MRI.

Viswanath S, Bloch BN, Chappelow J, Patel P, Rofsky N, Lenkinski R, Genega E, Madabhushi A.

Proc SPIE Int Soc Opt Eng. 2011 Mar 4;7963:79630U.

3.

Graph embedding to improve supervised classification and novel class detection: application to prostate cancer.

Madabhushi A, Shi J, Rosen M, Tomaszeweski JE, Feldman MD.

Med Image Comput Comput Assist Interv. 2005;8(Pt 1):729-37.

PMID:
16685911
4.

Consensus-locally linear embedding (C-LLE): application to prostate cancer detection on magnetic resonance spectroscopy.

Tiwari P, Rosen M, Madabhushi A.

Med Image Comput Comput Assist Interv. 2008;11(Pt 2):330-8.

PMID:
18982622
5.

Automated detection of prostatic adenocarcinoma from high-resolution ex vivo MRI.

Madabhushi A, Feldman MD, Metaxas DN, Tomaszeweski J, Chute D.

IEEE Trans Med Imaging. 2005 Dec;24(12):1611-25.

PMID:
16350920
6.

Spectral embedding based probabilistic boosting tree (ScEPTre): classifying high dimensional heterogeneous biomedical data.

Tiwari P, Rosen M, Reed G, Kurhanewicz J, Madabhushi A.

Med Image Comput Comput Assist Interv. 2009;12(Pt 2):844-51.

PMID:
20426190
7.

A comprehensive segmentation, registration, and cancer detection scheme on 3 Tesla in vivo prostate DCE-MRI.

Viswanath S, Bloch BN, Genega E, Rofsky N, Lenkinski R, Chappelow J, Toth R, Madabhushi A.

Med Image Comput Comput Assist Interv. 2008;11(Pt 1):662-9.

8.

Spectral embedding finds meaningful (relevant) structure in image and microarray data.

Higgs BW, Weller J, Solka JL.

BMC Bioinformatics. 2006 Feb 16;7:74.

9.

Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation.

Akhbardeh A, Jacobs MA.

Med Phys. 2012 Apr;39(4):2275-89. doi: 10.1118/1.3682173.

10.

Multi-kernel graph embedding for detection, Gleason grading of prostate cancer via MRI/MRS.

Tiwari P, Kurhanewicz J, Madabhushi A.

Med Image Anal. 2013 Feb;17(2):219-35. doi: 10.1016/j.media.2012.10.004. Epub 2012 Dec 13.

11.

Variable importance in nonlinear kernels (VINK): classification of digitized histopathology.

Ginsburg S, Ali S, Lee G, Basavanhally A, Madabhushi A.

Med Image Comput Comput Assist Interv. 2013;16(Pt 2):238-45.

PMID:
24579146
12.

Graph embedding and extensions: a general framework for dimensionality reduction.

Yan S, Xu D, Zhang B, Zhang HJ, Yang Q, Lin S.

IEEE Trans Pattern Anal Mach Intell. 2007 Jan;29(1):40-51.

PMID:
17108382
13.

Explicit shape descriptors: novel morphologic features for histopathology classification.

Sparks R, Madabhushi A.

Med Image Anal. 2013 Dec;17(8):997-1009. doi: 10.1016/j.media.2013.06.002. Epub 2013 Jun 24.

14.

A framework for optimal kernel-based manifold embedding of medical image data.

Zimmer VA, Lekadir K, Hoogendoorn C, Frangi AF, Piella G.

Comput Med Imaging Graph. 2015 Apr;41:93-107. doi: 10.1016/j.compmedimag.2014.06.001. Epub 2014 Jun 9. Review.

PMID:
25008538
15.

Robust linear dimensionality reduction.

Koren Y, Carmel L.

IEEE Trans Vis Comput Graph. 2004 Jul-Aug;10(4):459-70. doi: 10.1109/TVCG.2004.17.

PMID:
18579973
16.

A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image.

Ji ZX, Sun QS, Xia DS.

Comput Med Imaging Graph. 2011 Jul;35(5):383-97. doi: 10.1016/j.compmedimag.2010.12.001. Epub 2011 Jan 22.

PMID:
21256710
17.
18.

Investigating the efficacy of nonlinear dimensionality reduction schemes in classifying gene and protein expression studies.

Lee G, Rodriguez C, Madabhushi A.

IEEE/ACM Trans Comput Biol Bioinform. 2008 Jul-Sep;5(3):368-84. doi: 10.1109/TCBB.2008.36.

19.

Semi supervised multi kernel (SeSMiK) graph embedding: identifying aggressive prostate cancer via magnetic resonance imaging and spectroscopy.

Tiwari P, Kurhanewicz J, Rosen M, Madabhushi A.

Med Image Comput Comput Assist Interv. 2010;13(Pt 3):666-73.

20.

Topology-preserving tissue classification of magnetic resonance brain images.

Bazin PL, Pham DL.

IEEE Trans Med Imaging. 2007 Apr;26(4):487-96.

PMID:
17427736
Items per page

Supplemental Content

Write to the Help Desk