Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 112

1.

Strong coupling among semiconductor quantum dots induced by a metal nanoparticle.

He Y, Zhu KD.

Nanoscale Res Lett. 2012 Feb 1;7:95. doi: 10.1186/1556-276X-7-95.

2.

Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.

He Y, Zhu KD.

Sensors (Basel). 2017 Jun 20;17(6). pii: E1445. doi: 10.3390/s17061445. Review.

3.

Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle.

He Y, Jiang C, Chen B, Li JJ, Zhu KD.

Opt Lett. 2012 Jul 15;37(14):2943-5. doi: 10.1364/OL.37.002943.

PMID:
22825186
4.

Four-wave mixing signal enhancement and optical bistability of a hybrid metal nanoparticle-quantum dot molecule in a nanomechanical resonator.

Li JB, Liang S, Xiao S, He MD, Kim NC, Chen LQ, Wu GH, Peng YX, Luo XY, Guo ZP.

Opt Express. 2016 Feb 8;24(3):2360-9. doi: 10.1364/OE.24.002360.

PMID:
26906811
5.

Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems.

Li JB, Kim NC, Cheng MT, Zhou L, Hao ZH, Wang QQ.

Opt Express. 2012 Jan 16;20(2):1856-61. doi: 10.1364/OE.20.001856.

PMID:
22274530
6.

Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide.

Kim NC, Ko MC, Choe SI, Hao ZH, Zhou L, Li JB, Im SJ, Ko YH, Jo CG, Wang QQ.

Nanotechnology. 2016 Nov 18;27(46):465703. Epub 2016 Oct 17.

PMID:
27749280
7.

Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability.

Artuso RD, Bryant GW.

Nano Lett. 2008 Jul;8(7):2106-11. doi: 10.1021/nl800921z. Epub 2008 Jun 18.

PMID:
18558787
8.

Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures.

Vasa P, Pomraenke R, Schwieger S, Mazur YI, Kunets V, Srinivasan P, Johnson E, Kihm JE, Kim DS, Runge E, Salamo G, Lienau C.

Phys Rev Lett. 2008 Sep 12;101(11):116801. Epub 2008 Sep 8.

PMID:
18851308
9.

Coherent optical spectroscopy of a hybrid nanocrystal complex embedded in a nanomechanical resonator.

Wang H, Zhu KD.

Opt Express. 2010 Jul 19;18(15):16175-82. doi: 10.1364/OE.18.016175.

PMID:
20721003
10.

Quantum nature of a strongly coupled single quantum dot-cavity system.

Hennessy K, Badolato A, Winger M, Gerace D, Atatüre M, Gulde S, Fält S, Hu EL, Imamoğlu A.

Nature. 2007 Feb 22;445(7130):896-9. Epub 2007 Jan 28.

PMID:
17259971
11.

Single quantum dot controls a plasmonic cavity's scattering and anisotropy.

Hartsfield T, Chang WS, Yang SC, Ma T, Shi J, Sun L, Shvets G, Link S, Li X.

Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12288-92. doi: 10.1073/pnas.1508642112. Epub 2015 Sep 8.

12.

Photoinduced diffraction grating in hybrid artificial molecule.

Xiao ZH, Zheng L, Lin H.

Opt Express. 2012 Jan 16;20(2):1219-29. doi: 10.1364/OE.20.001219.

PMID:
22274466
13.

Observation of hybrid Tamm-plasmon exciton- polaritons with GaAs quantum wells and a MoSe2 monolayer.

Wurdack M, Lundt N, Klaas M, Baumann V, Kavokin AV, Höfling S, Schneider C.

Nat Commun. 2017 Aug 15;8(1):259. doi: 10.1038/s41467-017-00155-w.

14.

Anisotropy-Induced Quantum Interference and Population Trapping between Orthogonal Quantum Dot Exciton States in Semiconductor Cavity Systems.

Hughes S, Agarwal GS.

Phys Rev Lett. 2017 Feb 10;118(6):063601. doi: 10.1103/PhysRevLett.118.063601. Epub 2017 Feb 8.

PMID:
28234504
15.

Controlling cavity reflectivity with a single quantum dot.

Englund D, Faraon A, Fushman I, Stoltz N, Petroff P, Vucković J.

Nature. 2007 Dec 6;450(7171):857-61.

PMID:
18064008
16.

Coherent molecular resonances in quantum dot-metallic nanoparticle systems: coherent self-renormalization and structural effects.

Hatef A, Sadeghi SM, Singh MR.

Nanotechnology. 2012 May 25;23(20):205203. doi: 10.1088/0957-4484/23/20/205203. Epub 2012 Apr 30.

PMID:
22543983
17.

Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals.

Gómez DE, Vernon KC, Mulvaney P, Davis TJ.

Nano Lett. 2010 Jan;10(1):274-8. doi: 10.1021/nl903455z.

PMID:
20000744
18.

Metal-Semiconductor Nanoparticle Hybrids Formed by Self-Organization: A Platform to Address Exciton-Plasmon Coupling.

Strelow C, Theuerholz TS, Schmidtke C, Richter M, Merkl JP, Kloust H, Ye Z, Weller H, Heinz TF, Knorr A, Lange H.

Nano Lett. 2016 Aug 10;16(8):4811-8. doi: 10.1021/acs.nanolett.6b00982. Epub 2016 Jul 5.

PMID:
27355971
19.

Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer.

Lundt N, Klembt S, Cherotchenko E, Betzold S, Iff O, Nalitov AV, Klaas M, Dietrich CP, Kavokin AV, Höfling S, Schneider C.

Nat Commun. 2016 Oct 31;7:13328. doi: 10.1038/ncomms13328.

20.

Dynamically tuning emission band of CdSe/ZnS quantum dots assembled on Ag nanorod array: plasmon-enhanced Stark shift.

Peng XN, Zhou ZK, Zhang W, Hao ZH.

Opt Express. 2011 Nov 21;19(24):24804-9. doi: 10.1364/OE.19.024804.

PMID:
22109508

Supplemental Content

Support Center