Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 112

1.

Disulfide bond formation and activation of Escherichia coli β-galactosidase under oxidizing conditions.

Seras-Franzoso J, Affentranger R, Ferrer-Navarro M, Daura X, Villaverde A, García-Fruitós E.

Appl Environ Microbiol. 2012 Apr;78(7):2376-85. doi: 10.1128/AEM.06923-11.

3.

[Study on disulfide bond formation protein A in Escherichia coli].

Luo M, Guan YX, Yao SJ.

Sheng Wu Gong Cheng Xue Bao. 2007 Jan;23(1):7-15. Review. Chinese.

PMID:
17366881
4.

Biochemical characterization and mass spectrometric disulfide bond mapping of periplasmic alpha-amylase MalS of Escherichia coli.

Spiess C, Happersberger HP, Glocker MO, Spiess E, Rippe K, Ehrmann M.

J Biol Chem. 1997 Aug 29;272(35):22125-33.

5.
6.

Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path.

Lee C, Lee SM, Mukhopadhyay P, Kim SJ, Lee SC, Ahn WS, Yu MH, Storz G, Ryu SE.

Nat Struct Mol Biol. 2004 Dec;11(12):1179-85.

PMID:
15543158
7.

Pathways of disulfide bond formation in Escherichia coli.

Messens J, Collet JF.

Int J Biochem Cell Biol. 2006;38(7):1050-62. Review.

PMID:
16446111
9.

E. coli propionyl-CoA synthetase is regulated in vitro by an intramolecular disulfide bond.

Guo Y, Oliver DJ.

Prikl Biokhim Mikrobiol. 2012 May-Jun;48(3):289-93.

PMID:
22834299
10.

Folding determinants of LDL receptor type A modules.

Koduri V, Blacklow SC.

Biochemistry. 2001 Oct 30;40(43):12801-7.

PMID:
11669616
11.

Redox-dependent stability of the γ-glutamylcysteine synthetase enzyme of Escherichia coli: a novel means of redox regulation.

Kumar S, Kasturia N, Sharma A, Datt M, Bachhawat AK.

Biochem J. 2013 Feb 1;449(3):783-94. doi: 10.1042/BJ20120204.

PMID:
23126248
12.

Effect of disulfide-bond introduction on the activity and stability of the extended-spectrum class A beta-lactamase Toho-1.

Shimizu-Ibuka A, Matsuzawa H, Sakai H.

Biochim Biophys Acta. 2006 Aug;1764(8):1349-55.

PMID:
16890032
13.

Cysteine cross-linking defines part of the dimer and B/C domain interface of the Escherichia coli mannitol permease.

van Montfort BA, Schuurman-Wolters GK, Duurkens RH, Mensen R, Poolman B, Robillard GT.

J Biol Chem. 2001 Apr 20;276(16):12756-63.

14.

Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli.

Derman AI, Prinz WA, Belin D, Beckwith J.

Science. 1993 Dec 10;262(5140):1744-7.

PMID:
8259521
15.

Substitution for Asn460 cripples β-galactosidase (Escherichia coli) by increasing substrate affinity and decreasing transition state stability.

Wheatley RW, Kappelhoff JC, Hahn JN, Dugdale ML, Dutkoski MJ, Tamman SD, Fraser ME, Huber RE.

Arch Biochem Biophys. 2012 May;521(1-2):51-61. doi: 10.1016/j.abb.2012.03.014.

PMID:
22446164
16.

Molecular mapping of functionalities in the solution structure of reduced Grx4, a monothiol glutaredoxin from Escherichia coli.

Fladvad M, Bellanda M, Fernandes AP, Mammi S, Vlamis-Gardikas A, Holmgren A, Sunnerhagen M.

J Biol Chem. 2005 Jul 1;280(26):24553-61.

17.

Ser-796 of β-galactosidase (Escherichia coli) plays a key role in maintaining a balance between the opened and closed conformations of the catalytically important active site loop.

Jancewicz LJ, Wheatley RW, Sutendra G, Lee M, Fraser ME, Huber RE.

Arch Biochem Biophys. 2012 Jan 15;517(2):111-22. doi: 10.1016/j.abb.2011.11.017.

PMID:
22155115
18.

Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein.

Ostergaard H, Henriksen A, Hansen FG, Winther JR.

EMBO J. 2001 Nov 1;20(21):5853-62.

19.

The oxidase DsbA folds a protein with a nonconsecutive disulfide.

Messens J, Collet JF, Van Belle K, Brosens E, Loris R, Wyns L.

J Biol Chem. 2007 Oct 26;282(43):31302-7.

20.
Items per page

Supplemental Content

Support Center