Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 127

1.

Source implementation to eliminate low-frequency artifacts in finite difference time domain room acoustic simulation.

Jeong H, Lam YW.

J Acoust Soc Am. 2012 Jan;131(1):258-68. doi: 10.1121/1.3652886.

PMID:
22280589
2.

FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound.

Hallaj IM, Cleveland RO.

J Acoust Soc Am. 1999 May;105(5):L7-12.

PMID:
10335650
3.

Broadband impedance boundary conditions for the simulation of sound propagation in the time domain.

Bin J, Yousuff Hussaini M, Lee S.

J Acoust Soc Am. 2009 Feb;125(2):664-75. doi: 10.1121/1.2999339.

PMID:
19206844
4.

Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation.

Ostashev VE, Wilson DK, Liu L, Aldridge DF, Symons NP, Marlin D.

J Acoust Soc Am. 2005 Feb;117(2):503-17.

PMID:
15759672
5.

Finite-difference time-domain synthesis of infrasound propagation through an absorbing atmosphere.

de Groot-Hedlin C.

J Acoust Soc Am. 2008 Sep;124(3):1430-41. doi: 10.1121/1.2959736.

PMID:
19045635
6.

Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition.

Yuan X, Borup D, Wiskin J, Berggren M, Johnson SA.

IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(1):14-23. doi: 10.1109/58.741419.

PMID:
18238394
7.
8.

Efficient and accurate sound propagation using adaptive rectangular decomposition.

Raghuvanshi N, Narain R, Lin MC.

IEEE Trans Vis Comput Graph. 2009 Sep-Oct;15(5):789-801. doi: 10.1109/TVCG.2009.27.

PMID:
19590105
9.

Locally conformal method for acoustic finite-difference time-domain modeling of rigid surfaces.

Tolan JG, Schneider JB.

J Acoust Soc Am. 2003 Nov;114(5):2575-81.

PMID:
14649994
10.

Full wave modeling of therapeutic ultrasound: efficient time-domain implementation of the frequency power-law attenuation.

Liebler M, Ginter S, Dreyer T, Riedlinger RE.

J Acoust Soc Am. 2004 Nov;116(5):2742-50.

PMID:
15603120
11.
12.

Application of the symplectic finite-difference time-domain method to light scattering by small particles.

Zhai PW, Kattawar GW, Yang P, Li C.

Appl Opt. 2005 Mar 20;44(9):1650-6.

PMID:
15813268
13.

Finite-Difference Time-Domain Simulator for Half-Space Bioacoustic Problems.

Chaturvedi P, Insana MF.

Comput Methods Biomech Biomed Engin. 2000;3(2):109-118.

PMID:
11264842
14.

Treatment of frequency-dependent admittance boundary conditions in transient acoustic finite/infinite-element models.

Van den Nieuwenhof B, Coyette JP.

J Acoust Soc Am. 2001 Oct;110(4):1743-51.

PMID:
11681354
15.

Practical aspects of complex permittivity reconstruction with neural-network-controlled FDTD modeling of a two-port fixture.

Eves EE, Murphy EK, Yakovlev VV.

J Microw Power Electromagn Energy. 2007;41(4):81-94.

PMID:
18557399
16.

General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface.

Sun W, Pan H, Videen G.

Appl Opt. 2009 Nov 1;48(31):6015-25. doi: 10.1364/AO.48.006015.

PMID:
19881669
18.

Real-time near-field acoustic holography for continuously visualizing nonstationary acoustic fields.

Thomas JH, Grulier V, Paillasseur S, Pascal JC, Le Roux JC.

J Acoust Soc Am. 2010 Dec;128(6):3554-67. doi: 10.1121/1.3504656.

PMID:
21218888
19.

Absorption rate density (ARD) computation in microwave hyperthermia by the finite-difference time-domain method.

Pontalti R, Cristoforetti L, Valdagni R, Antolini R.

Phys Med Biol. 1990 Jul;35(7):891-904.

PMID:
2385621
20.

Perfectly matched layers for frequency-domain integral equation acoustic scattering problems.

Alles EJ, van Dongen KW.

IEEE Trans Ultrason Ferroelectr Freq Control. 2011 May;58(5):1077-86. doi: 10.1109/TUFFC.2011.1908.

PMID:
21622063

Supplemental Content

Support Center