Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 174

1.

A gene signature identified using a mouse model of androgen receptor-dependent prostate cancer predicts biochemical relapse in human disease.

Thompson VC, Day TK, Bianco-Miotto T, Selth LA, Han G, Thomas M, Buchanan G, Scher HI, Nelson CC; Australian Prostate Cancer BioResource, Greenberg NM, Butler LM, Tilley WD.

Int J Cancer. 2012 Aug 1;131(3):662-72. doi: 10.1002/ijc.26414. Epub 2012 Jan 24.

2.

Hormone status selects for spontaneous somatic androgen receptor variants that demonstrate specific ligand and cofactor dependent activities in autochthonous prostate cancer.

Han G, Foster BA, Mistry S, Buchanan G, Harris JM, Tilley WD, Greenberg NM.

J Biol Chem. 2001 Apr 6;276(14):11204-13. Epub 2000 Nov 3.

3.

Mutation of the androgen receptor causes oncogenic transformation of the prostate.

Han G, Buchanan G, Ittmann M, Harris JM, Yu X, Demayo FJ, Tilley W, Greenberg NM.

Proc Natl Acad Sci U S A. 2005 Jan 25;102(4):1151-6. Epub 2005 Jan 18.

4.

The oncogenic potential of a prostate cancer-derived androgen receptor mutant.

Shi XB, Xue L, Tepper CG, Gandour-Edwards R, Ghosh P, Kung HJ, DeVere White RW.

Prostate. 2007 May 1;67(6):591-602.

PMID:
17262801
5.

Induction of prostatic intraepithelial neoplasia and modulation of androgen receptor by ETS variant 1/ETS-related protein 81.

Shin S, Kim TD, Jin F, van Deursen JM, Dehm SM, Tindall DJ, Grande JP, Munz JM, Vasmatzis G, Janknecht R.

Cancer Res. 2009 Oct 15;69(20):8102-10. doi: 10.1158/0008-5472.CAN-09-0941. Epub 2009 Sep 29.

6.
7.

Androgen receptor modifications in prostate cancer cells upon long-termandrogen ablation and antiandrogen treatment.

Marques RB, Erkens-Schulze S, de Ridder CM, Hermans KG, Waltering K, Visakorpi T, Trapman J, Romijn JC, van Weerden WM, Jenster G.

Int J Cancer. 2005 Nov 1;117(2):221-9.

8.

Myosin VI is a modulator of androgen-dependent gene expression.

Loikkanen I, Toljamo K, Hirvikoski P, Väisänen T, Paavonen TK, Vaarala MH.

Oncol Rep. 2009 Nov;22(5):991-5.

PMID:
19787211
9.

Identification of novel androgen receptor target genes in prostate cancer.

Jariwala U, Prescott J, Jia L, Barski A, Pregizer S, Cogan JP, Arasheben A, Tilley WD, Scher HI, Gerald WL, Buchanan G, Coetzee GA, Frenkel B.

Mol Cancer. 2007 Jun 6;6:39.

10.

Recruitment of beta-catenin by wild-type or mutant androgen receptors correlates with ligand-stimulated growth of prostate cancer cells.

Masiello D, Chen SY, Xu Y, Verhoeven MC, Choi E, Hollenberg AN, Balk SP.

Mol Endocrinol. 2004 Oct;18(10):2388-401. Epub 2004 Jul 15.

PMID:
15256534
11.

Hedgehog overexpression leads to the formation of prostate cancer stem cells with metastatic property irrespective of androgen receptor expression in the mouse model.

Chang HH, Chen BY, Wu CY, Tsao ZJ, Chen YY, Chang CP, Yang CR, Lin DP.

J Biomed Sci. 2011 Jan 18;18:6. doi: 10.1186/1423-0127-18-6.

12.

Genome-wide analysis of androgen receptor targets reveals COUP-TF1 as a novel player in human prostate cancer.

Perets R, Kaplan T, Stein I, Hidas G, Tayeb S, Avraham E, Ben-Neriah Y, Simon I, Pikarsky E.

PLoS One. 2012;7(10):e46467. doi: 10.1371/journal.pone.0046467. Epub 2012 Oct 4.

13.

ID4 promotes AR expression and blocks tumorigenicity of PC3 prostate cancer cells.

Komaragiri SK, Bostanthirige DH, Morton DJ, Patel D, Joshi J, Upadhyay S, Chaudhary J.

Biochem Biophys Res Commun. 2016 Sep 9;478(1):60-66. doi: 10.1016/j.bbrc.2016.07.092. Epub 2016 Jul 25.

14.

TBLR1 as an androgen receptor (AR) coactivator selectively activates AR target genes to inhibit prostate cancer growth.

Daniels G, Li Y, Gellert LL, Zhou A, Melamed J, Wu X, Zhang X, Zhang D, Meruelo D, Logan SK, Basch R, Lee P.

Endocr Relat Cancer. 2014 Jan 16;21(1):127-42. doi: 10.1530/ERC-13-0293. Print 2014 Feb.

15.
16.

Androgen receptor-dependent regulation of Bcl-xL expression: Implication in prostate cancer progression.

Sun A, Tang J, Hong Y, Song J, Terranova PF, Thrasher JB, Svojanovsky S, Wang HG, Li B.

Prostate. 2008 Mar 1;68(4):453-61. doi: 10.1002/pros.20723.

PMID:
18196538
17.

Androgen receptor and its splice variant, AR-V7, differentially regulate FOXA1 sensitive genes in LNCaP prostate cancer cells.

Krause WC, Shafi AA, Nakka M, Weigel NL.

Int J Biochem Cell Biol. 2014 Sep;54:49-59. doi: 10.1016/j.biocel.2014.06.013. Epub 2014 Jul 4.

18.

Stromal activation associated with development of prostate cancer in prostate-targeted fibroblast growth factor 8b transgenic mice.

Elo TD, Valve EM, Seppänen JA, Vuorikoski HJ, Mäkelä SI, Poutanen M, Kujala PM, Härkönen PL.

Neoplasia. 2010 Nov;12(11):915-27.

19.

Steroidogenic enzyme AKR1C3 is a novel androgen receptor-selective coactivator that promotes prostate cancer growth.

Yepuru M, Wu Z, Kulkarni A, Yin F, Barrett CM, Kim J, Steiner MS, Miller DD, Dalton JT, Narayanan R.

Clin Cancer Res. 2013 Oct 15;19(20):5613-25. doi: 10.1158/1078-0432.CCR-13-1151. Epub 2013 Aug 30.

20.

Unique bisphenol A transcriptome in prostate cancer: novel effects on ERbeta expression that correspond to androgen receptor mutation status.

Hess-Wilson JK, Webb SL, Daly HK, Leung YK, Boldison J, Comstock CE, Sartor MA, Ho SM, Knudsen KE.

Environ Health Perspect. 2007 Nov;115(11):1646-53.

Supplemental Content

Support Center