Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 125

1.

Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis.

Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R.

Mol Cell Proteomics. 2012 Jun;11(6):O111.016717. doi: 10.1074/mcp.O111.016717. Epub 2012 Jan 18.

2.

Accurate peptide fragment mass analysis: multiplexed peptide identification and quantification.

Weisbrod CR, Eng JK, Hoopmann MR, Baker T, Bruce JE.

J Proteome Res. 2012 Mar 2;11(3):1621-32. doi: 10.1021/pr2008175. Epub 2012 Feb 21.

3.

Applying 'Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra' (SWATH) for systematic toxicological analysis with liquid chromatography-high-resolution tandem mass spectrometry.

Arnhard K, Gottschall A, Pitterl F, Oberacher H.

Anal Bioanal Chem. 2015 Jan;407(2):405-14. doi: 10.1007/s00216-014-8262-1. Epub 2014 Nov 1.

PMID:
25366975
4.

Peptides quantification by liquid chromatography with matrix-assisted laser desorption/ionization and selected reaction monitoring detection.

Lesur A, Varesio E, Domon B, Hopfgartner G.

J Proteome Res. 2012 Oct 5;11(10):4972-82. doi: 10.1021/pr300514u. Epub 2012 Aug 31.

PMID:
22897511
6.

Reproducible and consistent quantification of the Saccharomyces cerevisiae proteome by SWATH-mass spectrometry.

Selevsek N, Chang CY, Gillet LC, Navarro P, Bernhardt OM, Reiter L, Cheng LY, Vitek O, Aebersold R.

Mol Cell Proteomics. 2015 Mar;14(3):739-49. doi: 10.1074/mcp.M113.035550. Epub 2015 Jan 5.

7.

Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline: application to protein acetylation and phosphorylation.

Schilling B, Rardin MJ, MacLean BX, Zawadzka AM, Frewen BE, Cusack MP, Sorensen DJ, Bereman MS, Jing E, Wu CC, Verdin E, Kahn CR, Maccoss MJ, Gibson BW.

Mol Cell Proteomics. 2012 May;11(5):202-14. doi: 10.1074/mcp.M112.017707. Epub 2012 Mar 26.

8.

Ranking Fragment Ions Based on Outlier Detection for Improved Label-Free Quantification in Data-Independent Acquisition LC-MS/MS.

Bilbao A, Zhang Y, Varesio E, Luban J, Strambio-De-Castillia C, Lisacek F, Hopfgartner G.

J Proteome Res. 2015 Nov 6;14(11):4581-93. doi: 10.1021/acs.jproteome.5b00394. Epub 2015 Oct 14.

9.

Systematic evaluation of data-independent acquisition for sensitive and reproducible proteomics-a prototype design for a single injection assay.

Heaven MR, Funk AJ, Cobbs AL, Haffey WD, Norris JL, McCullumsmith RE, Greis KD.

J Mass Spectrom. 2016 Jan;51(1):1-11. doi: 10.1002/jms.3716.

11.

DeltAMT: a statistical algorithm for fast detection of protein modifications from LC-MS/MS data.

Fu Y, Xiu LY, Jia W, Ye D, Sun RX, Qian XH, He SM.

Mol Cell Proteomics. 2011 May;10(5):M110.000455. doi: 10.1074/mcp.M110.000455. Epub 2011 Feb 14.

12.

Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer.

Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B.

Mol Cell Proteomics. 2012 Dec;11(12):1709-23. doi: 10.1074/mcp.O112.019802. Epub 2012 Sep 7.

13.

The Use of Variable Q1 Isolation Windows Improves Selectivity in LC-SWATH-MS Acquisition.

Zhang Y, Bilbao A, Bruderer T, Luban J, Strambio-De-Castillia C, Lisacek F, Hopfgartner G, Varesio E.

J Proteome Res. 2015 Oct 2;14(10):4359-71. doi: 10.1021/acs.jproteome.5b00543. Epub 2015 Sep 3.

PMID:
26302369
14.

Determination of selected reaction monitoring peptide transitions via multiplexed product-ion scan modes.

Cho BK, Koo YD, Kim K, Kang MJ, Lee YY, Kim Y, Park KS, Kim KP, Yi EC.

Rapid Commun Mass Spectrom. 2014 Apr 15;28(7):773-80. doi: 10.1002/rcm.6837.

PMID:
24573808
15.

SWATH enables precise label-free quantification on proteome scale.

Huang Q, Yang L, Luo J, Guo L, Wang Z, Yang X, Jin W, Fang Y, Ye J, Shan B, Zhang Y.

Proteomics. 2015 Apr;15(7):1215-23. doi: 10.1002/pmic.201400270.

PMID:
25560523
16.

Novel highly sensitive, specific, and straightforward strategy for comprehensive N-terminal proteomics reveals unknown substrates of the mitochondrial peptidase Icp55.

Venne AS, Vögtle FN, Meisinger C, Sickmann A, Zahedi RP.

J Proteome Res. 2013 Sep 6;12(9):3823-30. doi: 10.1021/pr400435d. Epub 2013 Aug 21.

PMID:
23964590
17.

Reproducibility of combinatorial peptide ligand libraries for proteome capture evaluated by selected reaction monitoring.

Di Girolamo F, Righetti PG, Soste M, Feng Y, Picotti P.

J Proteomics. 2013 Aug 26;89:215-26. doi: 10.1016/j.jprot.2013.05.037. Epub 2013 Jun 7.

PMID:
23747450
18.

Translational Metabolomics of Head Injury: Exploring Dysfunctional Cerebral Metabolism with Ex Vivo NMR Spectroscopy-Based Metabolite Quantification.

Wolahan SM, Hirt D, Glenn TC.

In: Kobeissy FH, editor. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Boca Raton (FL): CRC Press/Taylor & Francis; 2015. Chapter 25.

19.

Multiplexed and data-independent tandem mass spectrometry for global proteome profiling.

Chapman JD, Goodlett DR, Masselon CD.

Mass Spectrom Rev. 2014 Nov-Dec;33(6):452-70. doi: 10.1002/mas.21400. Epub 2013 Nov 26. Review.

PMID:
24281846
20.

High-throughput database search and large-scale negative polarity liquid chromatography-tandem mass spectrometry with ultraviolet photodissociation for complex proteomic samples.

Madsen JA, Xu H, Robinson MR, Horton AP, Shaw JB, Giles DK, Kaoud TS, Dalby KN, Trent MS, Brodbelt JS.

Mol Cell Proteomics. 2013 Sep;12(9):2604-14. doi: 10.1074/mcp.O113.028258. Epub 2013 May 21.

Supplemental Content

Support Center