Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 79

1.

NMR derived model of GTPase effector domain (GED) self association: relevance to dynamin assembly.

Chakraborty S, Pratihar S, Hosur RV.

PLoS One. 2012;7(1):e30109. doi: 10.1371/journal.pone.0030109. Epub 2012 Jan 12.

2.

NMR insights into the core of GED assembly by H/D exchange coupled with DMSO dissociation and analysis of the denatured state.

Chakraborty S, Hosur RV.

J Mol Biol. 2011 Feb 4;405(5):1202-14. doi: 10.1016/j.jmb.2010.11.050. Epub 2010 Dec 7.

PMID:
21144852
3.

Resonance assignments of GTPase effector domain of dynamin in the aprotic solvent deuterated dimethyl sulfoxide.

Chakraborty S, Hosur RV.

Biomol NMR Assign. 2011 Apr;5(1):59-61. doi: 10.1007/s12104-010-9267-0. Epub 2010 Oct 9.

PMID:
20936383
4.

Structural characterization of the large soluble oligomers of the GTPase effector domain of dynamin.

Chugh J, Chatterjee A, Kumar A, Mishra RK, Mittal R, Hosur RV.

FEBS J. 2006 Jan;273(2):388-97.

5.
6.

1H, 15N, 13C resonance assignment of 9.7 M urea-denatured state of the GTPase effector domain (GED) of dynamin.

Chugh J, Sharma S, Kumar D, Hosur RV.

Biomol NMR Assign. 2009 Jun;3(1):13-6. doi: 10.1007/s12104-008-9129-1. Epub 2008 Nov 18.

PMID:
19636936
7.

NMR insights into a megadalton-size protein self-assembly.

Chugh J, Sharma S, Hosur RV.

Protein Sci. 2008 Aug;17(8):1319-25. doi: 10.1110/ps.035840.108. Epub 2008 May 27.

8.

Multiple distinct coiled-coils are involved in dynamin self-assembly.

Okamoto PM, Tripet B, Litowski J, Hodges RS, Vallee RB.

J Biol Chem. 1999 Apr 9;274(15):10277-86.

9.

Domain structure and intramolecular regulation of dynamin GTPase.

Muhlberg AB, Warnock DE, Schmid SL.

EMBO J. 1997 Nov 17;16(22):6676-83.

10.

An intramolecular signaling element that modulates dynamin function in vitro and in vivo.

Chappie JS, Acharya S, Liu YW, Leonard M, Pucadyil TJ, Schmid SL.

Mol Biol Cell. 2009 Aug;20(15):3561-71. doi: 10.1091/mbc.E09-04-0318. Epub 2009 Jun 10.

11.

Domain structure and function of dynamin probed by limited proteolysis.

Muhlberg AB, Schmid SL.

Methods. 2000 Apr;20(4):475-83.

PMID:
10720468
12.
13.

Dynamin GTPase domain mutants that differentially affect GTP binding, GTP hydrolysis, and clathrin-mediated endocytosis.

Song BD, Leonard M, Schmid SL.

J Biol Chem. 2004 Sep 24;279(39):40431-6. Epub 2004 Jul 19.

14.

An internal GAP domain negatively regulates presynaptic dynamin in vivo: a two-step model for dynamin function.

Narayanan R, Leonard M, Song BD, Schmid SL, Ramaswami M.

J Cell Biol. 2005 Apr 11;169(1):117-26.

15.

A model for dynamin self-assembly based on binding between three different protein domains.

Smirnova E, Shurland DL, Newman-Smith ED, Pishvaee B, van der Bliek AM.

J Biol Chem. 1999 May 21;274(21):14942-7.

17.

Dual function C-terminal domain of dynamin-1: modulation of self-assembly by interaction of the assembly site with SH3 domains.

Scaife R, VĂ©nien-Bryan C, Margolis RL.

Biochemistry. 1998 Dec 22;37(51):17673-9.

PMID:
9922133
18.

Intrapolypeptide interactions between the GTPase effector domain (GED) and the GTPase domain form the bundle signaling element in dynamin dimers.

Srinivasan S, Mattila JP, Schmid SL.

Biochemistry. 2014 Sep 16;53(36):5724-6. doi: 10.1021/bi500998s. Epub 2014 Sep 2.

19.

The proline/arginine-rich domain is a major determinant of dynamin self-activation.

Barylko B, Wang L, Binns DD, Ross JA, Tassin TC, Collins KA, Jameson DM, Albanesi JP.

Biochemistry. 2010 Dec 21;49(50):10592-4. doi: 10.1021/bi101343p. Epub 2010 Nov 23.

20.

Oligomerization and kinetic mechanism of the dynamin GTPase.

Eccleston JF, Binns DD, Davis CT, Albanesi JP, Jameson DM.

Eur Biophys J. 2002 Jul;31(4):275-82. Epub 2002 Jun 18. Review.

PMID:
12122474

Supplemental Content

Support Center