Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 227

1.

Expression, purification and preliminary biochemical and structural characterization of the leucine rich repeat namesake domain of leucine rich repeat kinase 2.

Vancraenenbroeck R, Lobbestael E, Weeks SD, Strelkov SV, Baekelandt V, Taymans JM, De Maeyer M.

Biochim Biophys Acta. 2012 Mar;1824(3):450-60. doi: 10.1016/j.bbapap.2011.12.009. Epub 2012 Jan 11.

PMID:
22251894
2.

Conformational heterogeneity of the Roc domains in C. tepidum Roc-COR and implications for human LRRK2 Parkinson mutations.

Rudi K, Ho FY, Gilsbach BK, Pots H, Wittinghofer A, Kortholt A, Klare JP.

Biosci Rep. 2015 Aug 26;35(5). pii: e00254. doi: 10.1042/BSR20150128.

3.

Mutations in the LRRK2 Roc-COR tandem domain link Parkinson's disease to Wnt signalling pathways.

Sancho RM, Law BM, Harvey K.

Hum Mol Genet. 2009 Oct 15;18(20):3955-68. doi: 10.1093/hmg/ddp337. Epub 2009 Jul 22.

4.

Expression, purification and preliminary biochemical studies of the N-terminal domain of leucine-rich repeat kinase 2.

Lu B, Zhai Y, Wu C, Pang X, Xu Z, Sun F.

Biochim Biophys Acta. 2010 Sep;1804(9):1780-4. doi: 10.1016/j.bbapap.2010.05.004. Epub 2010 May 20.

PMID:
20493972
5.

Analysis of LRRK2 accessory repeat domains: prediction of repeat length, number and sites of Parkinson's disease mutations.

Mills RD, Mulhern TD, Cheng HC, Culvenor JG.

Biochem Soc Trans. 2012 Oct;40(5):1086-9. Review.

PMID:
22988870
6.

The Parkinson disease gene LRRK2: evolutionary and structural insights.

Marín I.

Mol Biol Evol. 2006 Dec;23(12):2423-33. Epub 2006 Sep 11.

PMID:
16966681
7.

Structural model of the dimeric Parkinson's protein LRRK2 reveals a compact architecture involving distant interdomain contacts.

Guaitoli G, Raimondi F, Gilsbach BK, Gómez-Llorente Y, Deyaert E, Renzi F, Li X, Schaffner A, Jagtap PK, Boldt K, von Zweydorf F, Gotthardt K, Lorimer DD, Yue Z, Burgin A, Janjic N, Sattler M, Versées W, Ueffing M, Ubarretxena-Belandia I, Kortholt A, Gloeckner CJ.

Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):E4357-66. doi: 10.1073/pnas.1523708113. Epub 2016 Jun 29.

8.

A direct interaction between leucine-rich repeat kinase 2 and specific β-tubulin isoforms regulates tubulin acetylation.

Law BM, Spain VA, Leinster VH, Chia R, Beilina A, Cho HJ, Taymans JM, Urban MK, Sancho RM, Blanca Ramírez M, Biskup S, Baekelandt V, Cai H, Cookson MR, Berwick DC, Harvey K.

J Biol Chem. 2014 Jan 10;289(2):895-908. doi: 10.1074/jbc.M113.507913. Epub 2013 Nov 25.

10.

Contribution of GTPase activity to LRRK2-associated Parkinson disease.

Tsika E, Moore DJ.

Small GTPases. 2013 Jul-Sep;4(3):164-70. doi: 10.4161/sgtp.25130. Epub 2013 Jun 10. Review.

11.

Chemical genetic approach identifies microtubule affinity-regulating kinase 1 as a leucine-rich repeat kinase 2 substrate.

Krumova P, Reyniers L, Meyer M, Lobbestael E, Stauffer D, Gerrits B, Muller L, Hoving S, Kaupmann K, Voshol J, Fabbro D, Bauer A, Rovelli G, Taymans JM, Bouwmeester T, Baekelandt V.

FASEB J. 2015 Jul;29(7):2980-92. doi: 10.1096/fj.14-262329. Epub 2015 Apr 8.

PMID:
25854701
12.

Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson's disease R1441C/G mutants.

Li X, Tan YC, Poulose S, Olanow CW, Huang XY, Yue Z.

J Neurochem. 2007 Oct;103(1):238-47. Epub 2007 Jul 10.

13.

Biochemical characterization of highly purified leucine-rich repeat kinases 1 and 2 demonstrates formation of homodimers.

Civiero L, Vancraenenbroeck R, Belluzzi E, Beilina A, Lobbestael E, Reyniers L, Gao F, Micetic I, De Maeyer M, Bubacco L, Baekelandt V, Cookson MR, Greggio E, Taymans JM.

PLoS One. 2012;7(8):e43472. doi: 10.1371/journal.pone.0043472. Epub 2012 Aug 29.

14.

Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase.

Deng J, Lewis PA, Greggio E, Sluch E, Beilina A, Cookson MR.

Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1499-504. doi: 10.1073/pnas.0709098105. Epub 2008 Jan 29.

15.

The small GTPase activity of the ROC domain from LRRK2, a Parkinson's disease related protein.

Fu QS, Song AX, Li SX, Hu HY.

Protein Pept Lett. 2009;16(12):1442-6.

PMID:
20001906
16.

Prediction of the repeat domain structures and impact of parkinsonism-associated variations on structure and function of all functional domains of leucine-rich repeat kinase 2 (LRRK2).

Mills RD, Mulhern TD, Liu F, Culvenor JG, Cheng HC.

Hum Mutat. 2014 Apr;35(4):395-412. doi: 10.1002/humu.22515. Epub 2014 Feb 24. Review.

PMID:
24470158
17.

Revisiting the Roco G-protein cycle.

Terheyden S, Ho FY, Gilsbach BK, Wittinghofer A, Kortholt A.

Biochem J. 2015 Jan 1;465(1):139-47. doi: 10.1042/BJ20141095.

PMID:
25317655
18.

LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson's disease mutants affect kinase activity.

Jaleel M, Nichols RJ, Deak M, Campbell DG, Gillardon F, Knebel A, Alessi DR.

Biochem J. 2007 Jul 15;405(2):307-17.

19.

Identification of the autophosphorylation sites of LRRK2.

Kamikawaji S, Ito G, Iwatsubo T.

Biochemistry. 2009 Nov 24;48(46):10963-75. doi: 10.1021/bi9011379.

PMID:
19824698
20.

Structural and functional in silico analysis of LRRK2 missense substitutions.

Cardona F, Tormos-Pérez M, Pérez-Tur J.

Mol Biol Rep. 2014;41(4):2529-42. doi: 10.1007/s11033-014-3111-z. Epub 2014 Feb 2.

PMID:
24488318

Supplemental Content

Support Center