Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 233

1.

Genome-wide association scan and phased haplotype construction for quantitative trait loci affecting boar taint in three pig breeds.

Gregersen VR, Conley LN, Sørensen KK, Guldbrandtsen B, Velander IH, Bendixen C.

BMC Genomics. 2012 Jan 13;13:22. doi: 10.1186/1471-2164-13-22.

2.

Association between SNPs within candidate genes and compounds related to boar taint and reproduction.

Moe M, Lien S, Aasmundstad T, Meuwissen TH, Hansen MH, Bendixen C, Grindflek E.

BMC Genet. 2009 Jul 5;10:32. doi: 10.1186/1471-2156-10-32.

3.

Revealing genetic relationships between compounds affecting boar taint and reproduction in pigs.

Grindflek E, Meuwissen TH, Aasmundstad T, Hamland H, Hansen MH, Nome T, Kent M, Torjesen P, Lien S.

J Anim Sci. 2011 Mar;89(3):680-92. doi: 10.2527/jas.2010-3290.

4.

Large scale genome-wide association and LDLA mapping study identifies QTLs for boar taint and related sex steroids.

Grindflek E, Lien S, Hamland H, Hansen MH, Kent M, van Son M, Meuwissen TH.

BMC Genomics. 2011 Jul 13;12:362. doi: 10.1186/1471-2164-12-362.

5.

Analysis of the genetics of boar taint reveals both single SNPs and regional effects.

Rowe SJ, Karacaören B, de Koning DJ, Lukic B, Hastings-Clark N, Velander I, Haley CS, Archibald AL.

BMC Genomics. 2014 Jun 3;15:424. doi: 10.1186/1471-2164-15-424.

6.

Boar taint in entire male pigs: a genomewide association study for direct and indirect genetic effects on androstenone.

Duijvesteijn N, Knol EF, Bijma P.

J Anim Sci. 2014 Oct;92(10):4319-28. doi: 10.2527/jas.2014-7863. Epub 2014 Aug 22.

7.

Genome-wide association analyses for boar taint components and testicular traits revealed regions having pleiotropic effects.

Große-Brinkhaus C, Storck LC, Frieden L, Neuhoff C, Schellander K, Looft C, Tholen E.

BMC Genet. 2015 Apr 9;16:36. doi: 10.1186/s12863-015-0194-z.

8.

Detection of quantitative trait loci for androstenone, skatole and boar taint in a cross between Large White and Meishan pigs.

Lee GJ, Archibald AL, Law AS, Lloyd S, Wood J, Haley CS.

Anim Genet. 2005 Feb;36(1):14-22.

PMID:
15670126
9.

A genome-wide association study on androstenone levels in pigs reveals a cluster of candidate genes on chromosome 6.

Duijvesteijn N, Knol EF, Merks JW, Crooijmans RP, Groenen MA, Bovenhuis H, Harlizius B.

BMC Genet. 2010 May 20;11:42. doi: 10.1186/1471-2156-11-42.

10.

Fine mapping of a QTL affecting levels of skatole on pig chromosome 7.

van Son M, Kent MP, Grove H, Agarwal R, Hamland H, Lien S, Grindflek E.

BMC Genet. 2017 Oct 11;18(1):85. doi: 10.1186/s12863-017-0549-8.

11.

Genetic parameters for androstenone and skatole as indicators of boar taint and their relationship to production and litter size traits in Danish Landrace.

Strathe AB, Velander IH, Mark T, Kadarmideen HN.

J Anim Sci. 2013 Jun;91(6):2587-95. doi: 10.2527/jas.2012-6107. Epub 2013 Mar 18.

12.

The effect of a c.-8G>T polymorphism on the expression of cytochrome b5A and boar taint in pigs.

Peacock J, Lou Y, Lundström K, Squires EJ.

Anim Genet. 2008 Feb;39(1):15-21. Epub 2007 Dec 19.

PMID:
18162105
13.

Exploiting whole genome sequence data to fine map and characterize candidate genes within a quantitative trait loci region affecting androstenone on porcine chromosome 5.

van Son M, Agarwal R, Kent MP, Grove H, Grindflek E, Lien S.

Anim Genet. 2017 Dec;48(6):653-659. doi: 10.1111/age.12615. Epub 2017 Oct 16.

PMID:
29034488
14.

RNA deep sequencing reveals novel candidate genes and polymorphisms in boar testis and liver tissues with divergent androstenone levels.

Gunawan A, Sahadevan S, Neuhoff C, Große-Brinkhaus C, Gad A, Frieden L, Tesfaye D, Tholen E, Looft C, Uddin MJ, Schellander K, Cinar MU.

PLoS One. 2013 May 16;8(5):e63259. doi: 10.1371/journal.pone.0063259. Print 2013.

15.

On the relationship between an Asian haplotype on chromosome 6 that reduces androstenone levels in boars and the differential expression of SULT2A1 in the testis.

Hidalgo AM, Bastiaansen JW, Harlizius B, Megens HJ, Madsen O, Crooijmans RP, Groenen MA.

BMC Genet. 2014 Jan 9;15:4. doi: 10.1186/1471-2156-15-4.

16.

Strategic use of anti-GnRH vaccine allowing selection of breeding boars without adverse effects on reproductive or production performances.

Oliviero C, Ollila A, Andersson M, Heinonen M, Voutila L, Serenius T, Peltoniemi O.

Theriogenology. 2016 Feb;85(3):476-82. doi: 10.1016/j.theriogenology.2015.09.027. Epub 2015 Sep 21.

PMID:
26474682
17.

Transcript profiling of candidate genes in testis of pigs exhibiting large differences in androstenone levels.

Grindflek E, Berget I, Moe M, Oeth P, Lien S.

BMC Genet. 2010 Jan 25;11:4. doi: 10.1186/1471-2156-11-4.

18.

Efficiency of genomic prediction for boar taint reduction in Danish Landrace pigs.

Lukić B, Pong-Wong R, Rowe SJ, de Koning DJ, Velander I, Haley CS, Archibald AL, Woolliams JA.

Anim Genet. 2015 Dec;46(6):607-16. doi: 10.1111/age.12369. Epub 2015 Oct 9.

19.

Genetic parameters for male fertility and its relationship to skatole and androstenone in Danish Landrace boars.

Strathe AB, Velander IH, Mark T, Ostersen T, Hansen C, Kadarmideen HN.

J Anim Sci. 2013 Oct;91(10):4659-68. doi: 10.2527/jas.2013-6454. Epub 2013 Aug 13.

20.

Genetic relationship between boar taint compounds, human nose scores, and reproduction traits in pigs.

Mathur PK, ten Napel J, Crump RE, Mulder HA, Knol EF.

J Anim Sci. 2013 Sep;91(9):4080-9. doi: 10.2527/jas.2013-6478. Epub 2013 Jul 3.

Supplemental Content

Support Center