Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 201

1.

Using an ensemble system to improve concept extraction from clinical records.

Kang N, Afzal Z, Singh B, van Mulligen EM, Kors JA.

J Biomed Inform. 2012 Jun;45(3):423-8. doi: 10.1016/j.jbi.2011.12.009. Epub 2012 Jan 3.

2.

Recognition of medication information from discharge summaries using ensembles of classifiers.

Doan S, Collier N, Xu H, Pham HD, Tu MP.

BMC Med Inform Decis Mak. 2012 May 7;12:36. doi: 10.1186/1472-6947-12-36.

3.

A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries.

Jiang M, Chen Y, Liu M, Rosenbloom ST, Mani S, Denny JC, Xu H.

J Am Med Inform Assoc. 2011 Sep-Oct;18(5):601-6. doi: 10.1136/amiajnl-2011-000163. Epub 2011 Apr 20.

4.

Comparing and combining chunkers of biomedical text.

Kang N, van Mulligen EM, Kors JA.

J Biomed Inform. 2011 Apr;44(2):354-60. doi: 10.1016/j.jbi.2010.10.005. Epub 2010 Nov 4.

5.

Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives.

Gobbel GT, Reeves R, Jayaramaraja S, Giuse D, Speroff T, Brown SH, Elkin PL, Matheny ME.

J Biomed Inform. 2014 Apr;48:54-65. doi: 10.1016/j.jbi.2013.11.008. Epub 2013 Dec 4.

6.

Enhancing clinical concept extraction with distributional semantics.

Jonnalagadda S, Cohen T, Wu S, Gonzalez G.

J Biomed Inform. 2012 Feb;45(1):129-40. doi: 10.1016/j.jbi.2011.10.007. Epub 2011 Nov 7.

7.

A supervised framework for resolving coreference in clinical records.

Rink B, Roberts K, Harabagiu SM.

J Am Med Inform Assoc. 2012 Sep-Oct;19(5):875-82. doi: 10.1136/amiajnl-2012-000810. Epub 2012 May 19.

8.

Automatic extraction of relations between medical concepts in clinical texts.

Rink B, Harabagiu S, Roberts K.

J Am Med Inform Assoc. 2011 Sep-Oct;18(5):594-600. doi: 10.1136/amiajnl-2011-000153.

9.

Feature engineering combined with machine learning and rule-based methods for structured information extraction from narrative clinical discharge summaries.

Xu Y, Hong K, Tsujii J, Chang EI.

J Am Med Inform Assoc. 2012 Sep-Oct;19(5):824-32. doi: 10.1136/amiajnl-2011-000776. Epub 2012 May 14.

10.

Automated concept-level information extraction to reduce the need for custom software and rules development.

D'Avolio LW, Nguyen TM, Goryachev S, Fiore LD.

J Am Med Inform Assoc. 2011 Sep-Oct;18(5):607-13. doi: 10.1136/amiajnl-2011-000183. Epub 2011 Jun 22.

11.

MITRE system for clinical assertion status classification.

Clark C, Aberdeen J, Coarr M, Tresner-Kirsch D, Wellner B, Yeh A, Hirschman L.

J Am Med Inform Assoc. 2011 Sep-Oct;18(5):563-7. doi: 10.1136/amiajnl-2011-000164. Epub 2011 Apr 22.

12.

Assessing the role of a medication-indication resource in the treatment relation extraction from clinical text.

Bejan CA, Wei WQ, Denny JC.

J Am Med Inform Assoc. 2015 Apr;22(e1):e162-76. doi: 10.1136/amiajnl-2014-002954. Epub 2014 Oct 21.

PMID:
25336593
13.

Hybrid methods for improving information access in clinical documents: concept, assertion, and relation identification.

Minard AL, Ligozat AL, Ben Abacha A, Bernhard D, Cartoni B, Deléger L, Grau B, Rosset S, Zweigenbaum P, Grouin C.

J Am Med Inform Assoc. 2011 Sep-Oct;18(5):588-93. doi: 10.1136/amiajnl-2011-000154. Epub 2011 May 19.

14.

Extracting important information from Chinese Operation Notes with natural language processing methods.

Wang H, Zhang W, Zeng Q, Li Z, Feng K, Liu L.

J Biomed Inform. 2014 Apr;48:130-6. doi: 10.1016/j.jbi.2013.12.017. Epub 2014 Jan 31.

15.

A knowledge discovery and reuse pipeline for information extraction in clinical notes.

Patrick JD, Nguyen DH, Wang Y, Li M.

J Am Med Inform Assoc. 2011 Sep-Oct;18(5):574-9. doi: 10.1136/amiajnl-2011-000302. Epub 2011 Jul 7.

16.

A methodology to enhance spatial understanding of disease outbreak events reported in news articles.

Chanlekha H, Collier N.

Int J Med Inform. 2010 Apr;79(4):284-96. doi: 10.1016/j.ijmedinf.2010.01.014. Epub 2010 Feb 13.

PMID:
20153972
17.

A context-blocks model for identifying clinical relationships in patient records.

Islamaj Doğan R, Névéol A, Lu Z.

BMC Bioinformatics. 2011 Jun 9;12 Suppl 3:S3. doi: 10.1186/1471-2105-12-S3-S3.

18.

Detecting concept relations in clinical text: insights from a state-of-the-art model.

Zhu X, Cherry C, Kiritchenko S, Martin J, de Bruijn B.

J Biomed Inform. 2013 Apr;46(2):275-85. doi: 10.1016/j.jbi.2012.11.006. Epub 2013 Feb 4.

19.

2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text.

Uzuner Ö, South BR, Shen S, DuVall SL.

J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6. doi: 10.1136/amiajnl-2011-000203. Epub 2011 Jun 16.

20.

Using machine learning for concept extraction on clinical documents from multiple data sources.

Torii M, Wagholikar K, Liu H.

J Am Med Inform Assoc. 2011 Sep-Oct;18(5):580-7. doi: 10.1136/amiajnl-2011-000155. Epub 2011 Jun 27.

Supplemental Content

Support Center