Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 119

1.

Transplanted fibroblasts prevents dysfunctional repair in a murine CXCR3-deficient scarring model.

Yates CC, Whaley D, Wells A.

Cell Transplant. 2012;21(5):919-31. doi: 10.3727/096368911X623817. Epub 2012 Jan 10.

2.

Lack of CXC chemokine receptor 3 signaling leads to hypertrophic and hypercellular scarring.

Yates CC, Krishna P, Whaley D, Bodnar R, Turner T, Wells A.

Am J Pathol. 2010 Apr;176(4):1743-55. doi: 10.2353/ajpath.2010.090564. Epub 2010 Mar 4.

3.

Delayed and deficient dermal maturation in mice lacking the CXCR3 ELR-negative CXC chemokine receptor.

Yates CC, Whaley D, Kulasekeran P, Hancock WW, Lu B, Bodnar R, Newsome J, Hebda PA, Wells A.

Am J Pathol. 2007 Aug;171(2):484-95. Epub 2007 Jun 28.

4.

Impact of transplanted fibroblasts on rabbit skin wounds.

Sandulache VC, Zhou Z, Sherman A, Dohar JE, Hebda PA.

Arch Otolaryngol Head Neck Surg. 2003 Mar;129(3):345-50.

PMID:
12622547
5.

Skin wound healing and scarring: fetal wounds and regenerative restitution.

Yates CC, Hebda P, Wells A.

Birth Defects Res C Embryo Today. 2012 Dec;96(4):325-33. doi: 10.1002/bdrc.21024. Review.

6.

Delayed reepithelialization and basement membrane regeneration after wounding in mice lacking CXCR3.

Yates CC, Whaley D, Hooda S, Hebda PA, Bodnar RJ, Wells A.

Wound Repair Regen. 2009 Jan-Feb;17(1):34-41. doi: 10.1111/j.1524-475X.2008.00439.x.

7.

Interference with transforming growth factor-beta/ Smad3 signaling results in accelerated healing of wounds in previously irradiated skin.

Flanders KC, Major CD, Arabshahi A, Aburime EE, Okada MH, Fujii M, Blalock TD, Schultz GS, Sowers A, Anzano MA, Mitchell JB, Russo A, Roberts AB.

Am J Pathol. 2003 Dec;163(6):2247-57.

8.

ELR-negative CXC chemokine CXCL11 (IP-9/I-TAC) facilitates dermal and epidermal maturation during wound repair.

Yates CC, Whaley D, Y-Chen A, Kulesekaran P, Hebda PA, Wells A.

Am J Pathol. 2008 Sep;173(3):643-52. doi: 10.2353/ajpath.2008.070990. Epub 2008 Jul 31.

9.

Promotion of incisional wound repair by human mesenchymal stem cell transplantation.

Stoff A, Rivera AA, Sanjib Banerjee N, Moore ST, Michael Numnum T, Espinosa-de-Los-Monteros A, Richter DF, Siegal GP, Chow LT, Feldman D, Vasconez LO, Michael Mathis J, Stoff-Khalili MA, Curiel DT.

Exp Dermatol. 2009 Apr;18(4):362-9. doi: 10.1111/j.1600-0625.2008.00792.x. Epub 2008 Sep 18.

10.

Delayed wound closure in fibromodulin-deficient mice is associated with increased TGF-β3 signaling.

Zheng Z, Nguyen C, Zhang X, Khorasani H, Wang JZ, Zara JN, Chu F, Yin W, Pang S, Le A, Ting K, Soo C.

J Invest Dermatol. 2011 Mar;131(3):769-78. doi: 10.1038/jid.2010.381. Epub 2010 Dec 30.

11.

Impaired wound healing in mice deficient in a matricellular protein SPARC (osteonectin, BM-40).

Basu A, Kligman LH, Samulewicz SJ, Howe CC.

BMC Cell Biol. 2001;2:15. Epub 2001 Aug 7.

12.

Altered Th1/Th2 commitment contributes to lung senescence in CXCR3-deficient mice.

Huang J, Li Z, Yao X, Li Y, Reng X, Li J, Wang W, Gao J, Wang C, Tankersley CG, Huang K.

Exp Gerontol. 2013 Aug;48(8):717-26. doi: 10.1016/j.exger.2013.04.001. Epub 2013 Apr 11.

PMID:
23583952
13.

Modulation of wound healing and scar formation by MG53 protein-mediated cell membrane repair.

Li H, Duann P, Lin PH, Zhao L, Fan Z, Tan T, Zhou X, Sun M, Fu M, Orange M, Sermersheim M, Ma H, He D, Steinberg SM, Higgins R, Zhu H, John E, Zeng C, Guan J, Ma J.

J Biol Chem. 2015 Oct 2;290(40):24592-603. doi: 10.1074/jbc.M115.680074. Epub 2015 Aug 25.

14.

Paracrine action of mesenchymal stromal cells delivered by microspheres contributes to cutaneous wound healing and prevents scar formation in mice.

Huang S, Wu Y, Gao D, Fu X.

Cytotherapy. 2015 Jul;17(7):922-31. doi: 10.1016/j.jcyt.2015.03.690. Epub 2015 May 1.

PMID:
25939802
15.

Multipotent stromal cells/mesenchymal stem cells and fibroblasts combine to minimize skin hypertrophic scarring.

Yates CC, Rodrigues M, Nuschke A, Johnson ZI, Whaley D, Stolz D, Newsome J, Wells A.

Stem Cell Res Ther. 2017 Sep 5;8(1):193. doi: 10.1186/s13287-017-0644-9.

16.

Effect of osteopontin in regulating bone marrow mesenchymal stem cell treatment of skin wounds in diabetic mice.

Meng H, Wang Z, Wang W, Li W, Wu Q, Lei X, Ouyang X, Liang Z.

Diabetes Metab Res Rev. 2014 Sep;30(6):457-66. doi: 10.1002/dmrr.2566.

PMID:
24827928
17.

Protection against TGF-β1-induced fibrosis effects of IL-10 on dermal fibroblasts and its potential therapeutics for the reduction of skin scarring.

Shi JH, Guan H, Shi S, Cai WX, Bai XZ, Hu XL, Fang XB, Liu JQ, Tao K, Zhu XX, Tang CW, Hu DH.

Arch Dermatol Res. 2013 May;305(4):341-52. doi: 10.1007/s00403-013-1314-0. Epub 2013 Jan 16.

PMID:
23321694
18.

Dermal transforming growth factor-beta responsiveness mediates wound contraction and epithelial closure.

Martinez-Ferrer M, Afshar-Sherif AR, Uwamariya C, de Crombrugghe B, Davidson JM, Bhowmick NA.

Am J Pathol. 2010 Jan;176(1):98-107. doi: 10.2353/ajpath.2010.090283. Epub 2009 Dec 3.

19.

Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair.

Fathke C, Wilson L, Hutter J, Kapoor V, Smith A, Hocking A, Isik F.

Stem Cells. 2004;22(5):812-22.

20.

CXCR3-independent actions of the CXC chemokine CXCL10 in the infarcted myocardium and in isolated cardiac fibroblasts are mediated through proteoglycans.

Saxena A, Bujak M, Frunza O, Dobaczewski M, Gonzalez-Quesada C, Lu B, Gerard C, Frangogiannis NG.

Cardiovasc Res. 2014 Jul 15;103(2):217-27. doi: 10.1093/cvr/cvu138. Epub 2014 Jun 1.

Supplemental Content

Support Center