Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 64

1.

Self-organized Au nanoarrays on vertical graphenes: an advanced three-dimensional sensing platform.

Rider AE, Kumar S, Furman SA, Ostrikov KK.

Chem Commun (Camb). 2012 Mar 11;48(21):2659-61. doi: 10.1039/c2cc17326c. Epub 2012 Jan 6.

PMID:
22227575
2.

Label free sub-picomole level DNA detection with Ag nanoparticle decorated Au nanotip arrays as surface enhanced Raman spectroscopy platform.

Lo HC, Hsiung HI, Chattopadhyay S, Han HC, Chen CF, Leu JP, Chen KH, Chen LC.

Biosens Bioelectron. 2011 Jan 15;26(5):2413-8. doi: 10.1016/j.bios.2010.10.022. Epub 2010 Oct 16.

PMID:
21044833
3.

Unidirectional arrays of vertically standing graphenes in reactive plasmas.

Kumar S, Ostrikov KK.

Nanoscale. 2011 Oct 5;3(10):4296-300. doi: 10.1039/c1nr10860c. Epub 2011 Sep 15.

PMID:
21918784
4.

Au@Cu Nanoarrays with Uniform Long-Range Ordered Structure: Synthesis and SERS Applications.

Zhang P, Sun H, Guan W, Liang J, Zhu X, Zhang J, Chen M, Cao M, Qian W, Gao K, Cui G.

Micromachines (Basel). 2018 Dec 19;9(12). pii: E678. doi: 10.3390/mi9120678.

5.

From single to multiple Ag-layer modification of Au nanocavity substrates: a tunable probe of the chemical surface-enhanced Raman scattering mechanism.

Tognalli NG, Cortés E, Hernández-Nieves AD, Carro P, Usaj G, Balseiro CA, Vela ME, Salvarezza RC, Fainstein A.

ACS Nano. 2011 Jul 26;5(7):5433-43. doi: 10.1021/nn200567m. Epub 2011 Jun 23.

PMID:
21675769
6.

Thermal annealing of Au nanorod self-assembled nanostructured materials: morphology and optical properties.

Hu X, Wang T, Dong S.

J Colloid Interface Sci. 2007 Dec 15;316(2):947-53. Epub 2007 Sep 14.

PMID:
17904153
7.
8.

Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing.

Gopinath A, Boriskina SV, Premasiri WR, Ziegler L, Reinhard BM, Dal Negro L.

Nano Lett. 2009 Nov;9(11):3922-9. doi: 10.1021/nl902134r.

PMID:
19754067
9.

Graphene-quantum-dot assembled nanotubes: a new platform for efficient Raman enhancement.

Cheng H, Zhao Y, Fan Y, Xie X, Qu L, Shi G.

ACS Nano. 2012 Mar 27;6(3):2237-44. doi: 10.1021/nn204289t. Epub 2012 Feb 16.

PMID:
22324375
10.

Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering.

Mu C, Zhang JP, Xu D.

Nanotechnology. 2010 Jan 8;21(1):015604. doi: 10.1088/0957-4484/21/1/015604. Epub 2009 Nov 30.

PMID:
19946166
11.

Three-dimensional Pt-coated Au nanoparticle arrays: applications for electrocatalysis and surface-enhanced Raman scattering.

Park YK, Yoo SH, Park S.

Langmuir. 2008 Apr 15;24(8):4370-5. doi: 10.1021/la703169e. Epub 2008 Mar 7.

PMID:
18324847
12.

Binary Nanoparticle Graphene Hybrid Structure-Based Highly Sensitive Biosensing Platform for Norovirus-Like Particle Detection.

Lee J, Takemura K, Kato CN, Suzuki T, Park EY.

ACS Appl Mater Interfaces. 2017 Aug 16;9(32):27298-27304. doi: 10.1021/acsami.7b07012. Epub 2017 Aug 4.

PMID:
28752760
13.

In situ controlled growth of well-dispersed gold nanoparticles in TiO2 nanotube arrays as recyclable substrates for surface-enhanced Raman scattering.

Chen Y, Tian G, Pan K, Tian C, Zhou J, Zhou W, Ren Z, Fu H.

Dalton Trans. 2012 Jan 21;41(3):1020-6. doi: 10.1039/c1dt11540e. Epub 2011 Nov 14.

PMID:
22083352
14.

Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors.

Caldwell JD, Glembocki O, Bezares FJ, Bassim ND, Rendell RW, Feygelson M, Ukaegbu M, Kasica R, Shirey L, Hosten C.

ACS Nano. 2011 May 24;5(5):4046-55. doi: 10.1021/nn200636t. Epub 2011 Apr 25.

PMID:
21480637
15.

Atmospheric microplasma-functionalized 3D microfluidic strips within dense carbon nanotube arrays confine Au nanodots for SERS sensing.

Yick S, Han ZJ, Ostrikov KK.

Chem Commun (Camb). 2013 Apr 11;49(28):2861-3. doi: 10.1039/c3cc00282a.

PMID:
23404040
16.

Tailoring plasmonic nanostructures for optimal SERS sensing of small molecules and large microorganisms.

Xu J, Zhang L, Gong H, Homola J, Yu Q.

Small. 2011 Feb 7;7(3):371-6. doi: 10.1002/smll.201001673. Epub 2010 Dec 14.

PMID:
21294266
17.

Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering.

Liao Q, Mu C, Xu DS, Ai XC, Yao JN, Zhang JP.

Langmuir. 2009 Apr 21;25(8):4708-14. doi: 10.1021/la8036555.

PMID:
19366228
18.

Au nanorod arrays tailored for surface-enhanced Raman spectroscopy.

Suzuki M, Nakajima K, Kimura K, Fukuoka T, Mori Y.

Anal Sci. 2007 Jul;23(7):829-33.

19.

Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis.

Tong L, Righini M, Gonzalez MU, Quidant R, Käll M.

Lab Chip. 2009 Jan 21;9(2):193-5. doi: 10.1039/b813204f. Epub 2008 Nov 12.

PMID:
19107272
20.

The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement.

Sztainbuch IW.

J Chem Phys. 2006 Sep 28;125(12):124707.

PMID:
17014200

Supplemental Content

Support Center