Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 80

1.

Variation in transport explains polymorphism of histidine and urocanate utilization in a natural Pseudomonas population.

Zhang XX, Chang H, Tran SL, Gauntlett JC, Cook GM, Rainey PB.

Environ Microbiol. 2012 Aug;14(8):1941-51. doi: 10.1111/j.1462-2920.2011.02692.x.

PMID:
22225938
2.
3.

Role of the Transporter-Like Sensor Kinase CbrA in Histidine Uptake and Signal Transduction.

Zhang XX, Gauntlett JC, Oldenburg DG, Cook GM, Rainey PB.

J Bacteriol. 2015 Sep;197(17):2867-78. doi: 10.1128/JB.00361-15.

5.

Dual involvement of CbrAB and NtrBC in the regulation of histidine utilization in Pseudomonas fluorescens SBW25.

Zhang XX, Rainey PB.

Genetics. 2008 Jan;178(1):185-95. doi: 10.1534/genetics.107.081984.

7.

Urocanate as a potential signaling molecule for bacterial recognition of eukaryotic hosts.

Zhang XX, Ritchie SR, Rainey PB.

Cell Mol Life Sci. 2014 Feb;71(4):541-7. doi: 10.1007/s00018-013-1527-6.

PMID:
24305948
8.

Characterization of a Snorhizobium meliloti ATP-binding cassette histidine transporter also involved in betaine and proline uptake.

Boncompagni E, Dupont L, Mignot T, Osteräs M, Lambert A, Poggi MC, Le Rudulier D.

J Bacteriol. 2000 Jul;182(13):3717-25.

9.

L-histidine utilization in Aspergillus nidulans.

Polkinghorne MA, Hynes MJ.

J Bacteriol. 1982 Mar;149(3):931-40.

10.

Cloning and expression in Escherichia coli of histidine utilization genes from Pseudomonas putida.

Consevage MW, Porter RD, Phillips AT.

J Bacteriol. 1985 Apr;162(1):138-46.

11.

The origin and ecological significance of multiple branches for histidine utilization in Pseudomonas aeruginosa PAO1.

Gerth ML, Ferla MP, Rainey PB.

Environ Microbiol. 2012 Aug;14(8):1929-40. doi: 10.1111/j.1462-2920.2011.02691.x.

PMID:
22225844
12.
13.
14.
15.

Regulation of histidine catabolism by succinate in Pseudomonas putida.

Hug DH, Roth D, Hunter J.

J Bacteriol. 1968 Aug;96(2):396-402.

16.

Histidine dissimilation in Streptomyces coelicolor.

Kendrick KE, Wheelis ML.

J Gen Microbiol. 1982 Sep;128(9):2029-40.

17.

Survival and ecological fitness of Pseudomonas fluorescens genetically engineered with dual biocontrol mechanisms.

Bainton NJ, Lynch JM, Naseby D, Way JA.

Microb Ecol. 2004 Oct;48(3):349-57.

PMID:
15692855
18.

Diversity and functional analysis of LuxR-type transcriptional regulators of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens.

de Bruijn I, Raaijmakers JM.

Appl Environ Microbiol. 2009 Jul;75(14):4753-61. doi: 10.1128/AEM.00575-09.

20.

Purification and properties of formylglutamate amidohydrolase from Pseudomonas putida.

Hu L, Mulfinger LM, Phillips AT.

J Bacteriol. 1987 Oct;169(10):4696-702.

Items per page

Supplemental Content

Support Center