Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Thermoelectric properties of Cu-dispersed bi0.5sb1.5te3.

Kim IH, Choi SM, Seo WS, Cheong DI.

Nanoscale Res Lett. 2012 Jan 5;7(1):2. doi: 10.1186/1556-276X-7-2.

2.

Preparation and thermoelectric properties of Ag-dispersed Bi0.5Sb1.5Te3.

Kim IH, Choi SM, Sea WS, Cheong DI.

J Nanosci Nanotechnol. 2013 May;13(5):3660-4.

PMID:
23858923
3.

Roles of Cu in the Enhanced Thermoelectric Properties in Bi0.5Sb1.5Te₃.

Hao F, Qiu P, Song Q, Chen H, Lu P, Ren D, Shi X, Chen L.

Materials (Basel). 2017 Mar 1;10(3). pii: E251. doi: 10.3390/ma10030251.

4.

High density p-type Bi0.5Sb1.5Te3 nanowires by electrochemical templating through ion-track lithography.

Li X, Koukharenko E, Nandhakumar IS, Tudor J, Beeby SP, White NM.

Phys Chem Chem Phys. 2009 May 14;11(18):3584-90. doi: 10.1039/b818040g. Epub 2009 Feb 25.

PMID:
19421565
5.

Towards high refrigeration capability: the controllable structure of hierarchical Bi(0.5)Sb(1.5)Te3 flakes on a metal electrode.

Cao L, Deng Y, Gao H, Wang Y, Chen X, Zhu Z.

Phys Chem Chem Phys. 2015 Mar 14;17(10):6809-18. doi: 10.1039/c4cp05386a.

PMID:
25669900
6.

3D Printing Fabrication of Amorphous Thermoelectric Materials with Ultralow Thermal Conductivity.

He M, Zhao Y, Wang B, Xi Q, Zhou J, Liang Z.

Small. 2015 Nov 25;11(44):5889-94. doi: 10.1002/smll.201502153. Epub 2015 Oct 8.

PMID:
26448629
7.

Control of phonon transport by the formation of the Al2O3 interlayer in Al2O3-ZnO superlattice thin films and their in-plane thermoelectric energy generator performance.

Park NW, Ahn JY, Park TH, Lee JH, Lee WY, Cho K, Yoon YG, Choi CJ, Park JS, Lee SK.

Nanoscale. 2017 Jun 1;9(21):7027-7036. doi: 10.1039/c7nr00690j.

PMID:
28368061
8.

High-performance dispenser printed MA p-type Bi(0.5)Sb(1.5)Te(3) flexible thermoelectric generators for powering wireless sensor networks.

Madan D, Wang Z, Chen A, Wright PK, Evans JW.

ACS Appl Mater Interfaces. 2013 Nov 27;5(22):11872-6. doi: 10.1021/am403568t. Epub 2013 Nov 8.

PMID:
24160841
9.

High-Performance Screen-Printed Thermoelectric Films on Fabrics.

Shin S, Kumar R, Roh JW, Ko DS, Kim HS, Kim SI, Yin L, Schlossberg SM, Cui S, You JM, Kwon S, Zheng J, Wang J, Chen R.

Sci Rep. 2017 Aug 4;7(1):7317. doi: 10.1038/s41598-017-07654-2.

10.

Thermoelectric characteristics of the p-type (Bi, Sb)2Te3 nanocomposites processed with silicon nanodispersion.

Kim MY, Yu BK, Choi JY, Oh TS.

J Nanosci Nanotechnol. 2014 Oct;14(10):7855-9.

PMID:
25942880
11.

Enhanced figure of merit in nanostructured (Bi,Sb)2Te3 with optimized composition, prepared by a straightforward arc-melting procedure.

Serrano-Sánchez F, Gharsallah M, Nemes NM, Biskup N, Varela M, Martínez JL, Fernández-Díaz MT, Alonso JA.

Sci Rep. 2017 Jul 24;7(1):6277. doi: 10.1038/s41598-017-05428-4.

12.

Minority Carrier Blocking to Enhance the Thermoelectric Performance of Solution-Processed BixSb2-xTe3 Nanocomposites via a Liquid-Phase Sintering Process.

Zhang C, Ng H, Li Z, Khor KA, Xiong Q.

ACS Appl Mater Interfaces. 2017 Apr 12;9(14):12501-12510. doi: 10.1021/acsami.7b01473. Epub 2017 Mar 30.

PMID:
28318220
13.

Hot-Injection Synthesis of Cu-Doped Cu₂ZnSnSe₄ Nanocrystals to Reach Thermoelectric zT of 0.70 at 450°C.

Chen D, Zhao Y, Chen Y, Wang B, Wang Y, Zhou J, Liang Z.

ACS Appl Mater Interfaces. 2015 Nov 11;7(44):24403-8. doi: 10.1021/acsami.5b08011. Epub 2015 Oct 28.

PMID:
26497358
14.

The effect of Cu substitution on microstructure and thermoelectric properties of LaCoO3 ceramics.

Li F, Li JF, Li JH, Yao FZ.

Phys Chem Chem Phys. 2012 Sep 21;14(35):12213-20. doi: 10.1039/c2cp41743j. Epub 2012 Aug 3.

PMID:
22858990
15.

Effects of doping on transport properties in Cu-Bi-Se-based thermoelectric materials.

Hwang JY, Mun HA, Kim SI, Lee KM, Kim J, Lee KH, Kim SW.

Inorg Chem. 2014 Dec 15;53(24):12732-8. doi: 10.1021/ic5014945. Epub 2014 Nov 17.

PMID:
25402498
16.

Thermoelectric properties of Bi1-xSnxCuSeO solid solutions.

Yang Y, Liu X, Liang X.

Dalton Trans. 2017 Feb 21;46(8):2510-2515. doi: 10.1039/c6dt04885d.

PMID:
28145540
17.

Fe-Doping Effect on Thermoelectric Properties of p-Type Bi0.48Sb1.52Te₃.

Mun H, Lee KH, Kim SJ, Kim JY, Lee JH, Lim JH, Park HJ, Roh JW, Kim SW.

Materials (Basel). 2015 Mar 5;8(3):959-965. doi: 10.3390/ma8030959.

18.

Enhanced thermoelectric properties of selenium-deficient layered TiSe(2-x): a charge-density-wave material.

Bhatt R, Bhattacharya S, Basu R, Ahmad S, Chauhan AK, Okram GS, Bhatt P, Roy M, Navaneethan M, Hayakawa Y, Debnath AK, Singh A, Aswal DK, Gupta SK.

ACS Appl Mater Interfaces. 2014 Nov 12;6(21):18619-25. doi: 10.1021/am503477z. Epub 2014 Oct 30.

PMID:
25318103
19.

Thermoelectric properties of the quaternary chalcogenides BaCu5.9STe6 and BaCu5.9SeTe6.

Oudah M, Kleinke KM, Kleinke H.

Inorg Chem. 2015 Feb 2;54(3):845-9. doi: 10.1021/ic502055z. Epub 2014 Oct 9.

PMID:
25299429
20.

Enhanced Thermoelectric Performance of Cu₂SnSe₃-Based Composites Incorporated with Nano-Fullerene.

Zhao D, Ning J, Wu D, Zuo M.

Materials (Basel). 2016 Jul 28;9(8). pii: E629. doi: 10.3390/ma9080629.

Supplemental Content

Support Center