Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

A network-based approach on elucidating the multi-faceted nature of chronological aging in S. cerevisiae.

Borklu Yucel E, Ulgen KO.

PLoS One. 2011;6(12):e29284. doi: 10.1371/journal.pone.0029284.

2.
3.

Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence.

Weinberger M, Mesquita A, Caroll T, Marks L, Yang H, Zhang Z, Ludovico P, Burhans WC.

Aging (Albany NY). 2010 Oct;2(10):709-26.

4.

Chronological aging-induced apoptosis in yeast.

Fabrizio P, Longo VD.

Biochim Biophys Acta. 2008 Jul;1783(7):1280-5. doi: 10.1016/j.bbamcr.2008.03.017. Review.

5.

Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity.

Managbanag JR, Witten TM, Bonchev D, Fox LA, Tsuchiya M, Kennedy BK, Kaeberlein M.

PLoS One. 2008;3(11):e3802. doi: 10.1371/journal.pone.0003802.

6.

Multiomics Approach to Novel Therapeutic Targets for Cancer and Aging-Related Diseases: Role of Sld7 in Yeast Aging Network.

Dayan IE, Arga KY, Ulgen KO.

OMICS. 2017 Feb;21(2):100-113. doi: 10.1089/omi.2016.0157.

PMID:
28118095
8.

Assessment of crosstalks between the Snf1 kinase complex and sphingolipid metabolism in S. cerevisiae via systems biology approaches.

Borklu Yucel E, Ulgen KO.

Mol Biosyst. 2013 Nov;9(11):2914-31. doi: 10.1039/c3mb70248k.

PMID:
24056632
9.

Replicative and chronological aging in Saccharomyces cerevisiae.

Longo VD, Shadel GS, Kaeberlein M, Kennedy B.

Cell Metab. 2012 Jul 3;16(1):18-31. doi: 10.1016/j.cmet.2012.06.002. Review.

10.

Quantifying yeast chronological life span by outgrowth of aged cells.

Murakami C, Kaeberlein M.

J Vis Exp. 2009 May 6;(27). pii: 1156. doi: 10.3791/1156.

11.

The chronological life span of Saccharomyces cerevisiae.

Fabrizio P, Longo VD.

Aging Cell. 2003 Apr;2(2):73-81. Review.

PMID:
12882320
12.

The sweet taste of death: glucose triggers apoptosis during yeast chronological aging.

Ruckenstuhl C, Carmona-Gutierrez D, Madeo F.

Aging (Albany NY). 2010 Oct;2(10):643-9. Review.

13.

The chronological life span of Saccharomyces cerevisiae to study mitochondrial dysfunction and disease.

Parrella E, Longo VD.

Methods. 2008 Dec;46(4):256-62. doi: 10.1016/j.ymeth.2008.10.004.

PMID:
18930829
14.

Extension of chronological life span in yeast by decreased TOR pathway signaling.

Powers RW 3rd, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S.

Genes Dev. 2006 Jan 15;20(2):174-84.

15.

Information flow analysis of interactome networks.

Missiuro PV, Liu K, Zou L, Ross BC, Zhao G, Liu JS, Ge H.

PLoS Comput Biol. 2009 Apr;5(4):e1000350. doi: 10.1371/journal.pcbi.1000350.

16.

Sir2 blocks extreme life-span extension.

Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C, McGrew K, Longo VD.

Cell. 2005 Nov 18;123(4):655-67.

17.
18.

Aging defined by a chronologic-replicative protein network in Saccharomyces cerevisiae: an interactome analysis.

Barea F, Bonatto D.

Mech Ageing Dev. 2009 Jul;130(7):444-60. doi: 10.1016/j.mad.2009.04.005.

PMID:
19433103
19.

Understanding signaling in yeast: Insights from network analysis.

Arga KY, Onsan ZI, Kirdar B, Ulgen KO, Nielsen J.

Biotechnol Bioeng. 2007 Aug 1;97(5):1246-58.

PMID:
17252576
20.

A molecular mechanism of chronological aging in yeast.

Burtner CR, Murakami CJ, Kennedy BK, Kaeberlein M.

Cell Cycle. 2009 Apr 15;8(8):1256-70.

Items per page

Supplemental Content

Support Center