Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

Gradual pore formation in natural origin scaffolds throughout subcutaneous implantation.

Martins AM, Kretlow JD, Costa-Pinto AR, Malafaya PB, Fernandes EM, Neves NM, Alves CM, Mikos AG, Kasper FK, Reis RL.

J Biomed Mater Res A. 2012 Mar;100(3):599-612. doi: 10.1002/jbm.a.33261. Epub 2011 Dec 30.

2.

Natural stimulus responsive scaffolds/cells for bone tissue engineering: influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by CaP coatings.

Martins AM, Pham QP, Malafaya PB, Raphael RM, Kasper FK, Reis RL, Mikos AG.

Tissue Eng Part A. 2009 Aug;15(8):1953-63. doi: 10.1089/ten.tea.2008.0023.

PMID:
19327018
3.

Chitosan scaffolds incorporating lysozyme into CaP coatings produced by a biomimetic route: a novel concept for tissue engineering combining a self-regulated degradation system with in situ pore formation.

Martins AM, Pereira RC, Leonor IB, Azevedo HS, Reis RL.

Acta Biomater. 2009 Nov;5(9):3328-36. doi: 10.1016/j.actbio.2009.05.027. Epub 2009 May 27.

PMID:
19477305
4.

Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering.

Lopez-Heredia MA, Sohier J, Gaillard C, Quillard S, Dorget M, Layrolle P.

Biomaterials. 2008 Jun;29(17):2608-15. doi: 10.1016/j.biomaterials.2008.02.021. Epub 2008 Mar 20.

PMID:
18358527
5.

In vitro and in vivo evaluations of 3D porous TCP-coated and non-coated alumina scaffolds.

Kim YH, Anirban JM, Song HY, Seo HS, Lee BT.

J Biomater Appl. 2011 Feb;25(6):539-58. doi: 10.1177/0885328209356945. Epub 2010 Mar 5.

PMID:
20207781
6.

Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration.

Chesnutt BM, Viano AM, Yuan Y, Yang Y, Guda T, Appleford MR, Ong JL, Haggard WO, Bumgardner JD.

J Biomed Mater Res A. 2009 Feb;88(2):491-502. doi: 10.1002/jbm.a.31878.

PMID:
18306307
7.

Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies.

Jiang T, Nukavarapu SP, Deng M, Jabbarzadeh E, Kofron MD, Doty SB, Abdel-Fattah WI, Laurencin CT.

Acta Biomater. 2010 Sep;6(9):3457-70. doi: 10.1016/j.actbio.2010.03.023. Epub 2010 Mar 20.

PMID:
20307694
8.

Engineering tissue tubes using novel multilayered scaffolds in the rat peritoneal cavity.

Cao Y, Zhang B, Croll T, Rolfe BE, Campbell JH, Campbell GR, Martin D, Cooper-White JJ.

J Biomed Mater Res A. 2008 Dec 1;87(3):719-27. doi: 10.1002/jbm.a.31781.

PMID:
18200539
9.

The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites.

Roohani-Esfahani SI, Nouri-Khorasani S, Lu Z, Appleyard R, Zreiqat H.

Biomaterials. 2010 Jul;31(21):5498-509. doi: 10.1016/j.biomaterials.2010.03.058. Epub 2010 Apr 15.

PMID:
20398935
10.

Evaluation of dense polylactic acid/beta-tricalcium phosphate scaffolds for bone tissue engineering.

Yanoso-Scholl L, Jacobson JA, Bradica G, Lerner AL, O'Keefe RJ, Schwarz EM, Zuscik MJ, Awad HA.

J Biomed Mater Res A. 2010 Dec 1;95(3):717-26. doi: 10.1002/jbm.a.32868.

11.

Morphology, mechanical characterization and in vivo neo-vascularization of chitosan particle aggregated scaffolds architectures.

Malafaya PB, Santos TC, van Griensven M, Reis RL.

Biomaterials. 2008 Oct;29(29):3914-26. doi: 10.1016/j.biomaterials.2008.06.023. Epub 2008 Jul 22.

PMID:
18649938
12.

Influence of porosity and fibre diameter on the degradation of chitosan fibre-mesh scaffolds and cell adhesion.

Cunha-Reis C, TuzlaKoglu K, Baas E, Yang Y, El Haj A, Reis RL.

J Mater Sci Mater Med. 2007 Feb;18(2):195-200.

PMID:
17323150
13.

[A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].

Wang X, Liu L, Zhang Q.

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2007 Feb;21(2):120-4. Chinese.

PMID:
17357456
14.

Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering.

Lee GS, Park JH, Shin US, Kim HW.

Acta Biomater. 2011 Aug;7(8):3178-86. doi: 10.1016/j.actbio.2011.04.008. Epub 2011 Apr 27.

PMID:
21539944
15.

Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model.

Costa-Pinto AR, Correlo VM, Sol PC, Bhattacharya M, Srouji S, Livne E, Reis RL, Neves NM.

J Tissue Eng Regen Med. 2012 Jan;6(1):21-8. doi: 10.1002/term.391. Epub 2011 Feb 10.

PMID:
21312336
16.

Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure.

Costa PF, Vaquette C, Zhang Q, Reis RL, Ivanovski S, Hutmacher DW.

J Clin Periodontol. 2014 Mar;41(3):283-94. doi: 10.1111/jcpe.12214.

PMID:
24304192
17.

Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering.

Sicchieri LG, Crippa GE, de Oliveira PT, Beloti MM, Rosa AL.

J Tissue Eng Regen Med. 2012 Feb;6(2):155-62. doi: 10.1002/term.422. Epub 2011 Mar 28.

PMID:
21446054
18.

A new biocompatible delivery scaffold containing heparin and bone morphogenetic protein 2.

Thanyaphoo S, Kaewsrichan J.

Acta Pharm. 2016 Sep 1;66(3):373-85. doi: 10.1515/acph-2016-0026.

PMID:
27383886
19.

Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation.

Alves da Silva ML, Crawford A, Mundy JM, Correlo VM, Sol P, Bhattacharya M, Hatton PV, Reis RL, Neves NM.

Acta Biomater. 2010 Mar;6(3):1149-57. doi: 10.1016/j.actbio.2009.09.006. Epub 2009 Sep 27.

PMID:
19788942
20.

Reinforced nanohydroxyapatite/polyamide66 scaffolds by chitosan coating for bone tissue engineering.

Huang D, Zuo Y, Zou Q, Wang Y, Gao S, Wang X, Liu H, Li Y.

J Biomed Mater Res B Appl Biomater. 2012 Jan;100(1):51-7. doi: 10.1002/jbm.b.31921. Epub 2011 Sep 26.

PMID:
21953937

Supplemental Content

Support Center