Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 129

1.

A micro-electrocorticography platform and deployment strategies for chronic BCI applications.

Thongpang S, Richner TJ, Brodnick SK, Schendel A, Kim J, Wilson JA, Hippensteel J, Krugner-Higby L, Moran D, Ahmed AS, Neimann D, Sillay K, Williams JC.

Clin EEG Neurosci. 2011 Oct;42(4):259-65.

2.

Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.

Hill NJ, Gupta D, Brunner P, Gunduz A, Adamo MA, Ritaccio A, Schalk G.

J Vis Exp. 2012 Jun 26;(64). pii: 3993. doi: 10.3791/3993.

3.

Characterization of the effects of the human dura on macro- and micro-electrocorticographic recordings.

Bundy DT, Zellmer E, Gaona CM, Sharma M, Szrama N, Hacker C, Freudenburg ZV, Daitch A, Moran DW, Leuthardt EC.

J Neural Eng. 2014 Feb;11(1):016006.

4.

A cortical recording platform utilizing microECoG electrode arrays.

Kim J, Wilson JA, Williams JC.

Conf Proc IEEE Eng Med Biol Soc. 2007;2007:5353-7.

PMID:
18003217
5.

Deep brain stimulation: BCI at large, where are we going to?

Benabid AL, Costecalde T, Torres N, Moro C, Aksenova T, Eliseyev A, Charvet G, Sauter F, Ratel D, Mestais C, Pollak P, Chabardes S.

Prog Brain Res. 2011;194:71-82. doi: 10.1016/B978-0-444-53815-4.00016-9. Review.

PMID:
21867795
6.

Microscale recording from human motor cortex: implications for minimally invasive electrocorticographic brain-computer interfaces.

Leuthardt EC, Freudenberg Z, Bundy D, Roland J.

Neurosurg Focus. 2009 Jul;27(1):E10. doi: 10.3171/2009.4.FOCUS0980.

7.

PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays.

Castagnola E, Maiolo L, Maggiolini E, Minotti A, Marrani M, Maita F, Pecora A, Angotzi GN, Ansaldo A, Boffini M, Fadiga L, Fortunato G, Ricci D.

IEEE Trans Neural Syst Rehabil Eng. 2015 May;23(3):342-50. doi: 10.1109/TNSRE.2014.2342880. Epub 2014 Jul 25.

PMID:
25073174
8.

Multi-scale analysis of neural activity in humans: Implications for micro-scale electrocorticography.

Kellis S, Sorensen L, Darvas F, Sayres C, O'Neill K 3rd, Brown RB, House P, Ojemann J, Greger B.

Clin Neurophysiol. 2016 Jan;127(1):591-601. doi: 10.1016/j.clinph.2015.06.002. Epub 2015 Jun 11.

PMID:
26138146
9.

Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.

Suner S, Fellows MR, Vargas-Irwin C, Nakata GK, Donoghue JP.

IEEE Trans Neural Syst Rehabil Eng. 2005 Dec;13(4):524-41.

PMID:
16425835
10.

Human motor cortical activity recorded with Micro-ECoG electrodes, during individual finger movements.

Wang W, Degenhart AD, Collinger JL, Vinjamuri R, Sudre GP, Adelson PD, Holder DL, Leuthardt EC, Moran DW, Boninger ML, Schwartz AB, Crammond DJ, Tyler-Kabara EC, Weber DJ.

Conf Proc IEEE Eng Med Biol Soc. 2009;2009:586-9. doi: 10.1109/IEMBS.2009.5333704.

11.

A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices.

Schendel AA, Thongpang S, Brodnick SK, Richner TJ, Lindevig BD, Krugner-Higby L, Williams JC.

J Neurosci Methods. 2013 Aug 15;218(1):121-30. doi: 10.1016/j.jneumeth.2013.06.001. Epub 2013 Jun 12.

12.

Optogenetic micro-electrocorticography for modulating and localizing cerebral cortex activity.

Richner TJ, Thongpang S, Brodnick SK, Schendel AA, Falk RW, Krugner-Higby LA, Pashaie R, Williams JC.

J Neural Eng. 2014 Feb;11(1):016010. doi: 10.1088/1741-2560/11/1/016010. Epub 2014 Jan 20.

13.

A thin film polyimide mesh microelectrode for chronic epidural electrocorticography recording with enhanced contactability.

Baek DH, Lee J, Byeon HJ, Choi H, Young Kim I, Lee KM, Jungho Pak J, Pyo Jang D, Lee SH.

J Neural Eng. 2014 Aug;11(4):046023. doi: 10.1088/1741-2560/11/4/046023. Epub 2014 Jul 15.

PMID:
25024292
14.

Characterization of flexible ECoG electrode arrays for chronic recording in awake rats.

Yeager JD, Phillips DJ, Rector DM, Bahr DF.

J Neurosci Methods. 2008 Aug 30;173(2):279-85. doi: 10.1016/j.jneumeth.2008.06.024. Epub 2008 Jul 3.

15.

Electrocorticography-based brain computer interface--the Seattle experience.

Leuthardt EC, Miller KJ, Schalk G, Rao RP, Ojemann JG.

IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):194-8.

PMID:
16792292
16.

Intravenous recording of intracranial, broadband EEG.

Bower MR, Stead M, Van Gompel JJ, Bower RS, Sulc V, Asirvatham SJ, Worrell GA.

J Neurosci Methods. 2013 Mar 30;214(1):21-6. doi: 10.1016/j.jneumeth.2012.12.027. Epub 2013 Jan 8.

17.

3D microprobes for deep brain stimulation and recording.

Fomani AA, Moradi M, Assaf S, Mansour RR.

Conf Proc IEEE Eng Med Biol Soc. 2010;2010:1808-11. doi: 10.1109/IEMBS.2010.5626410.

PMID:
21095938
18.

An electrocorticographic electrode array for simultaneous recording from medial, lateral, and intrasulcal surface of the cortex in macaque monkeys.

Fukushima M, Saunders RC, Mullarkey M, Doyle AM, Mishkin M, Fujii N.

J Neurosci Methods. 2014 Aug 15;233:155-65. doi: 10.1016/j.jneumeth.2014.06.022. Epub 2014 Jun 24. Erratum in: J Neurosci Methods. 2015 Apr 30;245:205-6.

19.

Hand posture classification using electrocorticography signals in the gamma band over human sensorimotor brain areas.

Chestek CA, Gilja V, Blabe CH, Foster BL, Shenoy KV, Parvizi J, Henderson JM.

J Neural Eng. 2013 Apr;10(2):026002. doi: 10.1088/1741-2560/10/2/026002. Epub 2013 Jan 31.

20.

Signals from intraventricular depth electrodes can control a brain-computer interface.

Shih JJ, Krusienski DJ.

J Neurosci Methods. 2012 Jan 30;203(2):311-4. doi: 10.1016/j.jneumeth.2011.10.012. Epub 2011 Oct 21.

Items per page

Supplemental Content

Write to the Help Desk