Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 141

1.

Ultrasound-induced blood-brain barrier opening.

Konofagou EE, Tung YS, Choi J, Deffieux T, Baseri B, Vlachos F.

Curr Pharm Biotechnol. 2012 Jun;13(7):1332-45. Review.

2.

Submicron-bubble-enhanced focused ultrasound for blood-brain barrier disruption and improved CNS drug delivery.

Fan CH, Liu HL, Ting CY, Lee YH, Huang CY, Ma YJ, Wei KC, Yen TC, Yeh CK.

PLoS One. 2014 May 2;9(5):e96327. doi: 10.1371/journal.pone.0096327. eCollection 2014.

3.

Noninvasive, transient and selective blood-brain barrier opening in non-human primates in vivo.

Marquet F, Tung YS, Teichert T, Ferrera VP, Konofagou EE.

PLoS One. 2011;6(7):e22598. doi: 10.1371/journal.pone.0022598. Epub 2011 Jul 22.

4.

In vivo transcranial cavitation threshold detection during ultrasound-induced blood-brain barrier opening in mice.

Tung YS, Vlachos F, Choi JJ, Deffieux T, Selert K, Konofagou EE.

Phys Med Biol. 2010 Oct 21;55(20):6141-55. doi: 10.1088/0031-9155/55/20/007. Epub 2010 Sep 29.

5.

Dependence of the reversibility of focused- ultrasound-induced blood-brain barrier opening on pressure and pulse length in vivo.

Samiotaki G, Konofagou EE.

IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Nov;60(11):2257-65. doi: 10.1109/TUFFC.2013.6644731.

6.

Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening.

Sun T, Samiotaki G, Wang S, Acosta C, Chen CC, Konofagou EE.

Phys Med Biol. 2015 Dec 7;60(23):9079-94. doi: 10.1088/0031-9155/60/23/9079. Epub 2015 Nov 12.

7.

Magnetic-resonance imaging for kinetic analysis of permeability changes during focused ultrasound-induced blood-brain barrier opening and brain drug delivery.

Chai WY, Chu PC, Tsai MY, Lin YC, Wang JJ, Wei KC, Wai YY, Liu HL.

J Control Release. 2014 Oct 28;192:1-9. doi: 10.1016/j.jconrel.2014.06.023. Epub 2014 Jun 23.

PMID:
24969355
8.

Multi-modality safety assessment of blood-brain barrier opening using focused ultrasound and definity microbubbles: a short-term study.

Baseri B, Choi JJ, Tung YS, Konofagou EE.

Ultrasound Med Biol. 2010 Sep;36(9):1445-59. doi: 10.1016/j.ultrasmedbio.2010.06.005.

9.

The role of caveolin-1 in blood-brain barrier disruption induced by focused ultrasound combined with microbubbles.

Deng J, Huang Q, Wang F, Liu Y, Wang Z, Wang Z, Zhang Q, Lei B, Cheng Y.

J Mol Neurosci. 2012 Mar;46(3):677-87. doi: 10.1007/s12031-011-9629-9. Epub 2011 Aug 23.

PMID:
21861133
10.

The size of blood-brain barrier opening induced by focused ultrasound is dictated by the acoustic pressure.

Chen H, Konofagou EE.

J Cereb Blood Flow Metab. 2014 Jul;34(7):1197-204. doi: 10.1038/jcbfm.2014.71. Epub 2014 Apr 30.

11.

Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets.

Chen CC, Sheeran PS, Wu SY, Olumolade OO, Dayton PA, Konofagou EE.

J Control Release. 2013 Dec 28;172(3):795-804. doi: 10.1016/j.jconrel.2013.09.025. Epub 2013 Oct 2.

12.

Optimization of the ultrasound-induced blood-brain barrier opening.

Konofagou EE.

Theranostics. 2012;2(12):1223-37. doi: 10.7150/thno.5576. Epub 2012 Dec 31.

13.

Contrast-enhanced ultrasound imaging for the detection of focused ultrasound-induced blood-brain barrier opening.

Fan CH, Lin WH, Ting CY, Chai WY, Yen TC, Liu HL, Yeh CK.

Theranostics. 2014 Aug 1;4(10):1014-25. doi: 10.7150/thno.9575. eCollection 2014.

14.

Opening of the blood-brain barrier with an unfocused ultrasound device in rabbits.

Beccaria K, Canney M, Goldwirt L, Fernandez C, Adam C, Piquet J, Autret G, Clément O, Lafon C, Chapelon JY, Carpentier A.

J Neurosurg. 2013 Oct;119(4):887-98. doi: 10.3171/2013.5.JNS122374. Epub 2013 Jun 21.

PMID:
23790118
15.

Permeability dependence study of the focused ultrasound-induced blood-brain barrier opening at distinct pressures and microbubble diameters using DCE-MRI.

Vlachos F, Tung YS, Konofagou E.

Magn Reson Med. 2011 Sep;66(3):821-30. doi: 10.1002/mrm.22848. Epub 2011 Apr 4.

16.

Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo.

Choi JJ, Feshitan JA, Baseri B, Wang S, Tung YS, Borden MA, Konofagou EE.

IEEE Trans Biomed Eng. 2010 Jan;57(1):145-54. doi: 10.1109/TBME.2009.2034533. Epub 2009 Oct 20.

17.

Drug-loaded bubbles with matched focused ultrasound excitation for concurrent blood-brain barrier opening and brain-tumor drug delivery.

Fan CH, Ting CY, Chang YC, Wei KC, Liu HL, Yeh CK.

Acta Biomater. 2015 Mar;15:89-101. doi: 10.1016/j.actbio.2014.12.026. Epub 2015 Jan 7.

PMID:
25575854
18.

Efficiency of drug delivery enhanced by acoustic pressure during blood-brain barrier disruption induced by focused ultrasound.

Yang FY, Lee PY.

Int J Nanomedicine. 2012;7:2573-82. doi: 10.2147/IJN.S31675. Epub 2012 May 23.

19.

Pharmacodynamic and therapeutic investigation of focused ultrasound-induced blood-brain barrier opening for enhanced temozolomide delivery in glioma treatment.

Liu HL, Huang CY, Chen JY, Wang HY, Chen PY, Wei KC.

PLoS One. 2014 Dec 9;9(12):e114311. doi: 10.1371/journal.pone.0114311. eCollection 2014.

20.

Chirp- and random-based coded ultrasonic excitation for localized blood-brain barrier opening.

Kamimura HA, Wang S, Wu SY, Karakatsani ME, Acosta C, Carneiro AA, Konofagou EE.

Phys Med Biol. 2015 Oct 7;60(19):7695-712.

Supplemental Content

Support Center