Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Carbohydrate transporting membrane proteins of the rumen bacterium, Butyrivibrio proteoclasticus.

Bond JJ, Dunne JC, Kwan FY, Li D, Zhang K, Leahy SC, Kelly WJ, Attwood GT, Jordan TW.

J Proteomics. 2012 Jun 18;75(11):3138-44. doi: 10.1016/j.jprot.2011.12.013. Epub 2011 Dec 20.

PMID:
22200676
2.

Extracellular polysaccharide-degrading proteome of Butyrivibrio proteoclasticus.

Dunne JC, Li D, Kelly WJ, Leahy SC, Bond JJ, Attwood GT, Jordan TW.

J Proteome Res. 2012 Jan 1;11(1):131-42. doi: 10.1021/pr200864j. Epub 2011 Nov 29.

PMID:
22060546
3.

The Cytosolic Oligosaccharide-Degrading Proteome of Butyrivibrio Proteoclasticus.

Dunne JC, Kelly WJ, Leahy SC, Li D, Bond JJ, Peng L, Attwood GT, Jordan TW.

Proteomes. 2015 Oct 27;3(4):347-368. doi: 10.3390/proteomes3040347.

4.

The glycobiome of the rumen bacterium Butyrivibrio proteoclasticus B316(T) highlights adaptation to a polysaccharide-rich environment.

Kelly WJ, Leahy SC, Altermann E, Yeoman CJ, Dunne JC, Kong Z, Pacheco DM, Li D, Noel SJ, Moon CD, Cookson AL, Attwood GT.

PLoS One. 2010 Aug 3;5(8):e11942. doi: 10.1371/journal.pone.0011942.

5.

Structural and functional characterization of a promiscuous feruloyl esterase (Est1E) from the rumen bacterium Butyrivibrio proteoclasticus.

Goldstone DC, Villas-Bôas SG, Till M, Kelly WJ, Attwood GT, Arcus VL.

Proteins. 2010 May 1;78(6):1457-69. doi: 10.1002/prot.22662.

PMID:
20058325
6.

The fructanolytic abilities of the rumen bacterium Butyrivibrio fibrisolvens strain 3071.

Kasperowicz A, Stan-Głasek K, Taciak M, Michałowski T.

J Appl Microbiol. 2016 Jan;120(1):29-40. doi: 10.1111/jam.12976. Epub 2015 Dec 8.

PMID:
26481197
7.

Transcriptional analysis of differential carbohydrate utilization by Clostridium acetobutylicum.

Servinsky MD, Kiel JT, Dupuy NF, Sund CJ.

Microbiology. 2010 Nov;156(Pt 11):3478-91. doi: 10.1099/mic.0.037085-0. Epub 2010 Jul 23.

PMID:
20656779
8.

Several archaeal homologs of putative oligopeptide-binding proteins encoded by Thermotoga maritima bind sugars.

Nanavati DM, Thirangoon K, Noll KM.

Appl Environ Microbiol. 2006 Feb;72(2):1336-45.

9.

Global microarray analysis of carbohydrate use in alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5.

Song Y, Xue Y, Ma Y.

PLoS One. 2013;8(1):e54090. doi: 10.1371/journal.pone.0054090. Epub 2013 Jan 10.

10.

Fructose uptake in Bifidobacterium longum NCC2705 is mediated by an ATP-binding cassette transporter.

Wei X, Guo Y, Shao C, Sun Z, Zhurina D, Liu D, Liu W, Zou D, Jiang Z, Wang X, Zhao J, Shang W, Li X, Liao X, Huang L, Riedel CU, Yuan J.

J Biol Chem. 2012 Jan 2;287(1):357-67. doi: 10.1074/jbc.M111.266213. Epub 2011 Nov 18.

11.

An expression-driven approach to the prediction of carbohydrate transport and utilization regulons in the hyperthermophilic bacterium Thermotoga maritima.

Conners SB, Montero CI, Comfort DA, Shockley KR, Johnson MR, Chhabra SR, Kelly RM.

J Bacteriol. 2005 Nov;187(21):7267-82.

12.

Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays.

Barrangou R, Azcarate-Peril MA, Duong T, Conners SB, Kelly RM, Klaenhammer TR.

Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3816-21. Epub 2006 Feb 27.

13.

Biohydrogenation of 22:6n-3 by Butyrivibrio proteoclasticus P18.

Jeyanathan J, Escobar M, Wallace RJ, Fievez V, Vlaeminck B.

BMC Microbiol. 2016 Jun 10;16:104. doi: 10.1186/s12866-016-0720-9.

14.

Enterococcus faecalis Uses a Phosphotransferase System Permease and a Host Colonization-Related ABC Transporter for Maltodextrin Uptake.

Sauvageot N, Mokhtari A, Joyet P, Budin-Verneuil A, Blancato VS, Repizo GD, Henry C, Pikis A, Thompson J, Magni C, Hartke A, Deutscher J.

J Bacteriol. 2017 Apr 11;199(9). pii: e00878-16. doi: 10.1128/JB.00878-16. Print 2017 May 1.

15.

[Characterization of solute-binding protein XynE of the xylooligosaccharide transporter from Bacillus sp. N16-5].

Zhang Z, Song Y, Jiang K, Xue Y, Ma Y.

Wei Sheng Wu Xue Bao. 2015 Jan 4;55(1):40-9. Chinese.

PMID:
25958681
16.

The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis.

Braibant M, Gilot P, Content J.

FEMS Microbiol Rev. 2000 Oct;24(4):449-67. Review. Erratum in: FEMS Microbiol Rev 2002 Mar;26(1):109.

17.

Identification of proteolytic rumen bacteria isolated from New Zealand cattle.

Attwood GT, Reilly K.

J Appl Bacteriol. 1995 Jul;79(1):22-9.

PMID:
7665388
18.

Metagenomic insights into the carbohydrate-active enzymes carried by the microorganisms adhering to solid digesta in the rumen of cows.

Wang L, Hatem A, Catalyurek UV, Morrison M, Yu Z.

PLoS One. 2013 Nov 5;8(11):e78507. doi: 10.1371/journal.pone.0078507. eCollection 2013.

19.

Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria.

Postma PW, Lengeler JW, Jacobson GR.

Microbiol Rev. 1993 Sep;57(3):543-94. Review.

20.

Population level analysis of evolved mutations underlying improvements in plant hemicellulose and cellulose fermentation by Clostridium phytofermentans.

Mukherjee S, Thompson LK, Godin S, Schackwitz W, Lipzen A, Martin J, Blanchard JL.

PLoS One. 2014 Jan 22;9(1):e86731. doi: 10.1371/journal.pone.0086731. eCollection 2014.

Supplemental Content

Support Center