Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

The Na+/K+ pump is an important modulator of refractoriness and rotor dynamics in human atrial tissue.

Sánchez C, Corrias A, Bueno-Orovio A, Davies M, Swinton J, Jacobson I, Laguna P, Pueyo E, Rodríguez B.

Am J Physiol Heart Circ Physiol. 2012 Mar 1;302(5):H1146-59. doi: 10.1152/ajpheart.00668.2011. Epub 2011 Dec 23.

2.

Effects of Persistent Atrial Fibrillation-Induced Electrical Remodeling on Atrial Electro-Mechanics - Insights from a 3D Model of the Human Atria.

Adeniran I, MacIver DH, Garratt CJ, Ye J, Hancox JC, Zhang H.

PLoS One. 2015 Nov 25;10(11):e0142397. doi: 10.1371/journal.pone.0142397. eCollection 2015.

3.

Impact of ionic current variability on human ventricular cellular electrophysiology.

Romero L, Pueyo E, Fink M, Rodríguez B.

Am J Physiol Heart Circ Physiol. 2009 Oct;297(4):H1436-45. doi: 10.1152/ajpheart.00263.2009. Epub 2009 Jul 31.

4.

Impaired Na⁺-dependent regulation of acetylcholine-activated inward-rectifier K⁺ current modulates action potential rate dependence in patients with chronic atrial fibrillation.

Voigt N, Heijman J, Trausch A, Mintert-Jancke E, Pott L, Ravens U, Dobrev D.

J Mol Cell Cardiol. 2013 Aug;61:142-52. doi: 10.1016/j.yjmcc.2013.03.011. Epub 2013 Mar 24.

5.

Properties of two human atrial cell models in tissue: restitution, memory, propagation, and reentry.

Cherry EM, Evans SJ.

J Theor Biol. 2008 Oct 7;254(3):674-90. doi: 10.1016/j.jtbi.2008.06.030. Epub 2008 Jul 4.

6.

Atrial proarrhythmia due to increased inward rectifier current (I(K1)) arising from KCNJ2 mutation--a simulation study.

Kharche S, Garratt CJ, Boyett MR, Inada S, Holden AV, Hancox JC, Zhang H.

Prog Biophys Mol Biol. 2008 Oct-Nov;98(2-3):186-97. doi: 10.1016/j.pbiomolbio.2008.10.010. Epub 2008 Nov 9.

PMID:
19041665
7.
8.

Role of up-regulation of IK1 in action potential shortening associated with atrial fibrillation in humans.

Zhang H, Garratt CJ, Zhu J, Holden AV.

Cardiovasc Res. 2005 Jun 1;66(3):493-502. Epub 2005 Feb 24.

PMID:
15914114
9.

Atrium-specific Kir3.x determines inducibility, dynamics, and termination of fibrillation by regulating restitution-driven alternans.

Bingen BO, Neshati Z, Askar SF, Kazbanov IV, Ypey DL, Panfilov AV, Schalij MJ, de Vries AA, Pijnappels DA.

Circulation. 2013 Dec 24;128(25):2732-44. doi: 10.1161/CIRCULATIONAHA.113.005019. Epub 2013 Sep 24.

PMID:
24065610
10.

Ionic determinants of functional reentry in a 2-D model of human atrial cells during simulated chronic atrial fibrillation.

Pandit SV, Berenfeld O, Anumonwo JM, Zaritski RM, Kneller J, Nattel S, Jalife J.

Biophys J. 2005 Jun;88(6):3806-21. Epub 2005 Mar 25.

11.

Up-regulation of the inward rectifier K+ current (I K1) in the mouse heart accelerates and stabilizes rotors.

Noujaim SF, Pandit SV, Berenfeld O, Vikstrom K, Cerrone M, Mironov S, Zugermayr M, Lopatin AN, Jalife J.

J Physiol. 2007 Jan 1;578(Pt 1):315-26. Epub 2006 Nov 9.

12.

Human atrial action potential and Ca2+ model: sinus rhythm and chronic atrial fibrillation.

Grandi E, Pandit SV, Voigt N, Workman AJ, Dobrev D, Jalife J, Bers DM.

Circ Res. 2011 Oct 14;109(9):1055-66. doi: 10.1161/CIRCRESAHA.111.253955. Epub 2011 Sep 15.

13.

Properties and ionic mechanisms of action potential adaptation, restitution, and accommodation in canine epicardium.

Decker KF, Heijman J, Silva JR, Hund TJ, Rudy Y.

Am J Physiol Heart Circ Physiol. 2009 Apr;296(4):H1017-26. doi: 10.1152/ajpheart.01216.2008. Epub 2009 Jan 23.

14.

Pro-arrhythmogenic effects of the S140G KCNQ1 mutation in human atrial fibrillation - insights from modelling.

Kharche S, Adeniran I, Stott J, Law P, Boyett MR, Hancox JC, Zhang H.

J Physiol. 2012 Sep 15;590(18):4501-14. doi: 10.1113/jphysiol.2012.229146. Epub 2012 Apr 16.

15.

Antiarrhythmic effect of vernakalant in electrically remodeled goat atria is caused by slowing of conduction and prolongation of postrepolarization refractoriness.

van Hunnik A, Lau DH, Zeemering S, Kuiper M, Verheule S, Schotten U.

Heart Rhythm. 2016 Apr;13(4):964-72. doi: 10.1016/j.hrthm.2015.12.009. Epub 2015 Dec 8.

PMID:
26681610
16.

Effects of experimental heart failure on atrial cellular and ionic electrophysiology.

Li D, Melnyk P, Feng J, Wang Z, Petrecca K, Shrier A, Nattel S.

Circulation. 2000 Jun 6;101(22):2631-8.

PMID:
10840016
17.

Simulating the effects of atrial fibrillation induced electrical remodeling: a comprehensive simulation study.

Kharche S, Zhang H.

Conf Proc IEEE Eng Med Biol Soc. 2008;2008:593-6. doi: 10.1109/IEMBS.2008.4649222.

PMID:
19162725
18.

Systematic characterization of the ionic basis of rabbit cellular electrophysiology using two ventricular models.

Romero L, Carbonell B, Trenor B, Rodríguez B, Saiz J, Ferrero JM.

Prog Biophys Mol Biol. 2011 Oct;107(1):60-73. doi: 10.1016/j.pbiomolbio.2011.06.012. Epub 2011 Jul 3.

PMID:
21749896
19.
20.

The Contribution of Ionic Currents to Rate-Dependent Action Potential Duration and Pattern of Reentry in a Mathematical Model of Human Atrial Fibrillation.

Lee YS, Hwang M, Song JS, Li C, Joung B, Sobie EA, Pak HN.

PLoS One. 2016 Mar 10;11(3):e0150779. doi: 10.1371/journal.pone.0150779. eCollection 2016.

Supplemental Content

Support Center