Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 78

1.

Biotransformation of (1S)-2-carene and (1S)-3-carene by Picea abies suspension culture.

Dvorakova M, Valterova I, Saman D, Vanek T.

Molecules. 2011 Dec 19;16(12):10541-55. doi: 10.3390/molecules161210541.

2.

Transformation of terpenes using a Picea abies suspension culture.

Lindmark-Henriksson M, Isaksson D, Vanek T, Valterová I, Högberg HE, Sjödin K.

J Biotechnol. 2004 Jan 22;107(2):173-84.

PMID:
14711500
3.

Transformation of alpha-pinene using Picea abies suspension culture.

Lindmark-Henriksson M, Isaksson D, Sjödin K, Högberg HE, Vanek T, Valterová I.

J Nat Prod. 2003 Mar;66(3):337-43.

PMID:
12662089
4.

Formation of trans-verbenol and verbenone from alpha-pinene catalysed by immobilised Picea abies cells.

Vanek T, Halík J, Vanková R, Valterová I.

Biosci Biotechnol Biochem. 2005 Feb;69(2):321-5.

5.

Regio- and stereoselective oxidation of (+)-Delta(3)-carene by the larvae of common cutworm (Spodoptera litura).

Miyazawa M, Kano H.

J Agric Food Chem. 2010 Mar 24;58(6):3855-8. doi: 10.1021/jf903301v.

PMID:
20187604
6.

An integrated genomic, proteomic and biochemical analysis of (+)-3-carene biosynthesis in Sitka spruce (Picea sitchensis) genotypes that are resistant or susceptible to white pine weevil.

Hall DE, Robert JA, Keeling CI, Domanski D, Quesada AL, Jancsik S, Kuzyk MA, Hamberger B, Borchers CH, Bohlmann J.

Plant J. 2011 Mar;65(6):936-48. doi: 10.1111/j.1365-313X.2010.04478.x. Epub 2011 Feb 16. Erratum in: Plant J. 2012 Jun;70(5):902.

7.
9.

beta-fluoro-coniferyl alcohol does not inhibit lignin biosynthesis in suspension cultures of Picea abies (L.) Karst.

Gustafsson M, Kärkönen A, Simola LK, Teeri TH, Sipilä J, Kilpeläinen I, Brunow G.

Phytochemistry. 2001 Sep;58(2):243-8.

PMID:
11551546
10.

Preparation and absolute configuration of (1R,4R)-(+)-3-oxo-, (1S,4S)-(-)-3-oxo- and (1R,3S,4R)-(+)-3-acetyloxy-5-oxo-1 ,8-cineole.

Loandos Mdel H, Villecco MB, Burgueño-Tapia E, Joseph-Nathan P, Catalán CA.

Nat Prod Commun. 2009 Nov;4(11):1537-45.

PMID:
19967986
11.
12.
13.

Monoterpenes as novel substrates for oxidation and halo-hydroxylation with chloroperoxidase from Caldariomyces fumago.

Kaup BA, Piantini U, Wüst M, Schrader J.

Appl Microbiol Biotechnol. 2007 Jan;73(5):1087-96. Epub 2006 Oct 7.

PMID:
17028875
14.

Characterization of basic p-coumaryl and coniferyl alcohol oxidizing peroxidases from a lignin-forming Picea abies suspension culture.

Koutaniemi S, Toikka MM, Kärkönen A, Mustonen M, Lundell T, Simola LK, Kilpeläinen IA, Teeri TH.

Plant Mol Biol. 2005 May;58(2):141-57.

PMID:
16027971
15.

Biotransformation of acyclic monoterpenoids by Debaryomyces sp., Kluyveromyces sp., and Pichia sp. strains of environmental origin.

Ponzoni C, Gasparetti C, Goretti M, Turchetti B, Pagnoni UM, Cramarossa MR, Forti L, Buzzini P.

Chem Biodivers. 2008 Mar;5(3):471-83. doi: 10.1002/cbdv.200890046.

PMID:
18357555
16.
17.

Asymmetric synthesis of α-methyl-α-amino acids via diastereoselective alkylation of (1S)-(+)-3-carene derived tricyclic iminolactone.

Lu TJ, Lin CK.

J Org Chem. 2011 Mar 18;76(6):1621-33. doi: 10.1021/jo1022537. Epub 2011 Feb 9.

PMID:
21306163
18.

Biosynthesis of monoterpenes: regio- and stereochemistry of (+)-3-carene biosynthesis.

Savage TJ, Croteau R.

Arch Biochem Biophys. 1993 Sep;305(2):581-7.

PMID:
8373196
20.

Supplemental Content

Support Center