Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Glucose sensing by gut endocrine cells and activation of the vagal afferent pathway is impaired in a rodent model of type 2 diabetes mellitus.

Lee J, Cummings BP, Martin E, Sharp JW, Graham JL, Stanhope KL, Havel PJ, Raybould HE.

Am J Physiol Regul Integr Comp Physiol. 2012 Mar 15;302(6):R657-66. doi: 10.1152/ajpregu.00345.2011.

2.

Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP.

Theodorakis MJ, Carlson O, Michopoulos S, Doyle ME, Juhaszova M, Petraki K, Egan JM.

Am J Physiol Endocrinol Metab. 2006 Mar;290(3):E550-9.

3.

Intestinal glucose-induced calcium-calmodulin kinase signaling in the gut-brain axis in awake rats.

Vincent KM, Sharp JW, Raybould HE.

Neurogastroenterol Motil. 2011 Jul;23(7):e282-93. doi: 10.1111/j.1365-2982.2011.01673.x.

4.

Nutrient-driven incretin secretion into intestinal lymph is different between diabetic Goto-Kakizaki rats and Wistar rats.

Kindel TL, Yang Q, Yoder SM, Tso P.

Am J Physiol Gastrointest Liver Physiol. 2009 Feb;296(2):G168-74. doi: 10.1152/ajpgi.90506.2008.

5.

Incretin hormone expression in the gut of diabetic mice and rats.

Berghöfer P, Peterson RG, Schneider K, Fehmann HC, Göke B.

Metabolism. 1997 Mar;46(3):261-7.

PMID:
9054467
6.

Global biochemical profiling identifies β-hydroxypyruvate as a potential mediator of type 2 diabetes in mice and humans.

Zhang S, Wang S, Puhl MD, Jiang X, Hyrc KL, Laciny E, Wallendorf MJ, Pappan KL, Coyle JT, Wice BM.

Diabetes. 2015 Apr;64(4):1383-94. doi: 10.2337/db14-1188.

7.

Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus.

Vilsbøll T, Krarup T, Sonne J, Madsbad S, Vølund A, Juul AG, Holst JJ.

J Clin Endocrinol Metab. 2003 Jun;88(6):2706-13.

PMID:
12788877
8.
9.

Impaired enteroendocrine development in intestinal-specific Islet1 mouse mutants causes impaired glucose homeostasis.

Terry NA, Walp ER, Lee RA, Kaestner KH, May CL.

Am J Physiol Gastrointest Liver Physiol. 2014 Nov 15;307(10):G979-91. doi: 10.1152/ajpgi.00390.2013.

10.

Development and characterization of a novel rat model of type 2 diabetes mellitus: the UC Davis type 2 diabetes mellitus UCD-T2DM rat.

Cummings BP, Digitale EK, Stanhope KL, Graham JL, Baskin DG, Reed BJ, Sweet IR, Griffen SC, Havel PJ.

Am J Physiol Regul Integr Comp Physiol. 2008 Dec;295(6):R1782-93. doi: 10.1152/ajpregu.90635.2008.

11.

The pathophysiology of diabetes involves a defective amplification of the late-phase insulin response to glucose by glucose-dependent insulinotropic polypeptide-regardless of etiology and phenotype.

Vilsbøll T, Knop FK, Krarup T, Johansen A, Madsbad S, Larsen S, Hansen T, Pedersen O, Holst JJ.

J Clin Endocrinol Metab. 2003 Oct;88(10):4897-903.

PMID:
14557471
12.

Duodenal-jejunal bypass protects GK rats from {beta}-cell loss and aggravation of hyperglycemia and increases enteroendocrine cells coexpressing GIP and GLP-1.

Speck M, Cho YM, Asadi A, Rubino F, Kieffer TJ.

Am J Physiol Endocrinol Metab. 2011 May;300(5):E923-32. doi: 10.1152/ajpendo.00422.2010.

13.

Localization and activation of glucagon-like peptide-2 receptors on vagal afferents in the rat.

Nelson DW, Sharp JW, Brownfield MS, Raybould HE, Ney DM.

Endocrinology. 2007 May;148(5):1954-62.

PMID:
17234710
14.

Glucose-dependent trafficking of 5-HT3 receptors in rat gastrointestinal vagal afferent neurons.

Babic T, Troy AE, Fortna SR, Browning KN.

Neurogastroenterol Motil. 2012 Oct;24(10):e476-88. doi: 10.1111/j.1365-2982.2012.01987.x.

15.

Detection and signaling of glucose in the intestinal mucosa--vagal pathway.

Ashley Blackshaw L, Young RL.

Neurogastroenterol Motil. 2011 Jul;23(7):591-4. doi: 10.1111/j.1365-2982.2011.01719.x.

16.

K-cells and glucose-dependent insulinotropic polypeptide in health and disease.

Cho YM, Kieffer TJ.

Vitam Horm. 2010;84:111-50. doi: 10.1016/B978-0-12-381517-0.00004-7. Review.

PMID:
21094898
17.

Somatostatin receptor 5 and cannabinoid receptor 1 activation inhibit secretion of glucose-dependent insulinotropic polypeptide from intestinal K cells in rodents.

Moss CE, Marsh WJ, Parker HE, Ogunnowo-Bada E, Riches CH, Habib AM, Evans ML, Gribble FM, Reimann F.

Diabetologia. 2012 Nov;55(11):3094-103. doi: 10.1007/s00125-012-2663-5.

19.

Umami receptor activation increases duodenal bicarbonate secretion via glucagon-like peptide-2 release in rats.

Wang JH, Inoue T, Higashiyama M, Guth PH, Engel E, Kaunitz JD, Akiba Y.

J Pharmacol Exp Ther. 2011 Nov;339(2):464-73. doi: 10.1124/jpet.111.184788.

20.

A role for intestinal endocrine cell-expressed g protein-coupled receptor 119 in glycemic control by enhancing glucagon-like Peptide-1 and glucose-dependent insulinotropic Peptide release.

Chu ZL, Carroll C, Alfonso J, Gutierrez V, He H, Lucman A, Pedraza M, Mondala H, Gao H, Bagnol D, Chen R, Jones RM, Behan DP, Leonard J.

Endocrinology. 2008 May;149(5):2038-47. doi: 10.1210/en.2007-0966.

PMID:
18202141

Supplemental Content

Support Center