Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 92

1.

Cross-linking cellulose nanofibrils for potential elastic cryo-structured gels.

Syverud K, Kirsebom H, Hajizadeh S, Chinga-Carrasco G.

Nanoscale Res Lett. 2011 Dec 12;6:626. doi: 10.1186/1556-276X-6-626.

2.

Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation.

Liimatainen H, Visanko M, Sirviö JA, Hormi OE, Niinimaki J.

Biomacromolecules. 2012 May 14;13(5):1592-7. doi: 10.1021/bm300319m. Epub 2012 Apr 24.

PMID:
22512713
3.

On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment.

Gamelas JA, Pedrosa J, Lourenço AF, Mutjé P, González I, Chinga-Carrasco G, Singh G, Ferreira PJ.

Micron. 2015 May;72:28-33. doi: 10.1016/j.micron.2015.02.003. Epub 2015 Feb 19.

PMID:
25768897
4.

Fabrication of cationic cellulosic nanofibrils through aqueous quaternization pretreatment and their use in colloid aggregation.

Liimatainen H, Suopajärvi T, Sirviö J, Hormi O, Niinimäki J.

Carbohydr Polym. 2014 Mar 15;103:187-92. doi: 10.1016/j.carbpol.2013.12.042. Epub 2013 Dec 25.

PMID:
24528718
5.

Nanofibrillation of deep eutectic solvent-treated paper and board cellulose pulps.

Suopajärvi T, Sirviö JA, Liimatainen H.

Carbohydr Polym. 2017 Aug 1;169:167-175. doi: 10.1016/j.carbpol.2017.04.009. Epub 2017 Apr 5.

PMID:
28504133
6.

Enhancement of nanofibrillation of softwood cellulosic fibers by oxidation and sulfonation.

Pan S, Ragauskas AJ.

Carbohydr Polym. 2014 Oct 13;111:514-23. doi: 10.1016/j.carbpol.2014.04.096. Epub 2014 May 5.

PMID:
25037382
7.

On the structure and oxygen transmission rate of biodegradable cellulose nanobarriers.

Chinga-Carrasco G, Syverud K.

Nanoscale Res Lett. 2012 Mar 19;7(1):192. doi: 10.1186/1556-276X-7-192.

8.

Cellulose nanofibrils as filler for adhesives: effect on specific fracture energy of solid wood-adhesive bonds.

Veigel S, Müller U, Keckes J, Obersriebnig M, Gindl-Altmutter W.

Cellulose (Lond). 2011;18(5):1227-1237. Epub 2011 Jul 15.

9.

Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.

Li K, Huang J, Gao H, Zhong Y, Cao X, Chen Y, Zhang L, Cai J.

Biomacromolecules. 2016 Apr 11;17(4):1506-15. doi: 10.1021/acs.biomac.6b00109. Epub 2016 Mar 14.

PMID:
26955741
10.

Superabsorbent nanocomposite hydrogels made of carboxylated cellulose nanofibrils and CMC-g-p(AA-co-AM).

Zhou Y, Fu S, Zhang L, Zhan H.

Carbohydr Polym. 2013 Sep 12;97(2):429-35. doi: 10.1016/j.carbpol.2013.04.088. Epub 2013 May 4.

PMID:
23911467
11.

Hydrothermal carbonization of pulp mill streams.

Wikberg H, Ohra-Aho T, Honkanen M, Kanerva H, Harlin A, Vippola M, Laine C.

Bioresour Technol. 2016 Jul;212:236-244. doi: 10.1016/j.biortech.2016.04.061. Epub 2016 Apr 16.

PMID:
27107340
12.

Cation-induced hydrogels of cellulose nanofibrils with tunable moduli.

Dong H, Snyder JF, Williams KS, Andzelm JW.

Biomacromolecules. 2013 Sep 9;14(9):3338-45. doi: 10.1021/bm400993f. Epub 2013 Aug 19.

PMID:
23919541
13.

Cellulose nanofibrils aerogels generated from jute fibers.

Lin J, Yu L, Tian F, Zhao N, Li X, Bian F, Wang J.

Carbohydr Polym. 2014 Aug 30;109:35-43. doi: 10.1016/j.carbpol.2014.03.045. Epub 2014 Mar 28.

PMID:
24815398
14.

The role of heteropolysaccharides in developing oxidized cellulose nanofibrils.

Meng Q, Fu S, Lucia LA.

Carbohydr Polym. 2016 Jun 25;144:187-95. doi: 10.1016/j.carbpol.2016.02.058. Epub 2016 Feb 23.

PMID:
27083808
15.

An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation.

Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A.

Biomacromolecules. 2013 Jan 14;14(1):248-53. doi: 10.1021/bm301674e. Epub 2012 Dec 18.

PMID:
23215584
16.

Quantitative electron microscopy of cellulose nanofibril structures from Eucalyptus and Pinus radiata kraft pulp fibers.

Chinga-Carrasco G, Yu Y, Diserud O.

Microsc Microanal. 2011 Aug;17(4):563-71. doi: 10.1017/S1431927611000444. Epub 2011 Jul 11.

PMID:
21740618
17.

Cellulose Nanofibrils from Nonderivatizing Urea-Based Deep Eutectic Solvent Pretreatments.

Li P, Sirviö JA, Haapala A, Liimatainen H.

ACS Appl Mater Interfaces. 2017 Jan 25;9(3):2846-2855. doi: 10.1021/acsami.6b13625. Epub 2017 Jan 9.

PMID:
27997111
18.

Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II).

Zhou Y, Fu S, Zhang L, Zhan H, Levit MV.

Carbohydr Polym. 2014 Jan 30;101:75-82. doi: 10.1016/j.carbpol.2013.08.055. Epub 2013 Sep 10.

PMID:
24299751
19.

Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils.

Benítez AJ, Torres-Rendon J, Poutanen M, Walther A.

Biomacromolecules. 2013 Dec 9;14(12):4497-506. doi: 10.1021/bm401451m. Epub 2013 Nov 22.

PMID:
24245557
20.

Bacterial cellulose gels with high mechanical strength.

Numata Y, Sakata T, Furukawa H, Tajima K.

Mater Sci Eng C Mater Biol Appl. 2015 Feb;47:57-62. doi: 10.1016/j.msec.2014.11.026. Epub 2014 Nov 8.

PMID:
25492172

Supplemental Content

Support Center