Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 133

1.

Molecular characterization of the Aspergillus nidulans fbxA encoding an F-box protein involved in xylanase induction.

Colabardini AC, Humanes AC, Gouvea PF, Savoldi M, Goldman MH, Kress MR, Bayram Ö, Oliveira JV, Gomes MD, Braus GH, Goldman GH.

Fungal Genet Biol. 2012 Feb;49(2):130-40. doi: 10.1016/j.fgb.2011.11.004. Epub 2011 Nov 28.

2.

CreA mediates repression of the regulatory gene xlnR which controls the production of xylanolytic enzymes in Aspergillus nidulans.

Tamayo EN, Villanueva A, Hasper AA, de Graaff LH, Ramón D, Orejas M.

Fungal Genet Biol. 2008 Jun;45(6):984-93. doi: 10.1016/j.fgb.2008.03.002. Epub 2008 Mar 10.

PMID:
18420433
3.

CreA modulates the XlnR-induced expression on xylose of Aspergillus niger genes involved in xylan degradation.

de Vries RP, Visser J, de Graaff LH.

Res Microbiol. 1999 May;150(4):281-5.

PMID:
10376490
4.
5.

Onset of carbon catabolite repression in Aspergillus nidulans. Parallel involvement of hexokinase and glucokinase in sugar signaling.

Flipphi M, van de Vondervoort PJ, Ruijter GJ, Visser J, Arst HN Jr, Felenbok B.

J Biol Chem. 2003 Apr 4;278(14):11849-57. Epub 2003 Jan 7.

6.

Regulation of the xylanase-encoding xlnA gene of Aspergillus tubigensis.

de Graaff LH, van den Broeck HC, van Ooijen AJ, Visser J.

Mol Microbiol. 1994 May;12(3):479-90.

PMID:
8065265
7.

Carbon catabolite repression of the Aspergillus nidulans xlnA gene.

Orejas M, MacCabe AP, Pérez González JA, Kumar S, Ramón D.

Mol Microbiol. 1999 Jan;31(1):177-84.

8.

The effect of CreA in glucose and xylose catabolism in Aspergillus nidulans.

Prathumpai W, McIntyre M, Nielsen J.

Appl Microbiol Biotechnol. 2004 Feb;63(6):748-53. Epub 2003 Aug 15.

PMID:
12920487
9.

[The mutational analysis of carbon catabolite repression in filamentous fungus Penicillium canescens].

Chulkin AM, Vavilova EA, Benevolenskiĭ SV.

Mol Biol (Mosk). 2011 Sep-Oct;45(5):871-8. Russian.

PMID:
22393784
10.
11.

Diverse Regulation of the CreA Carbon Catabolite Repressor in Aspergillus nidulans.

Ries LN, Beattie SR, Espeso EA, Cramer RA, Goldman GH.

Genetics. 2016 May;203(1):335-52. doi: 10.1534/genetics.116.187872. Epub 2016 Mar 26.

12.

L-rhamnose induction of Aspergillus nidulans α-L-rhamnosidase genes is glucose repressed via a CreA-independent mechanism acting at the level of inducer uptake.

Tamayo-Ramos JA, Flipphi M, Pardo E, Manzanares P, Orejas M.

Microb Cell Fact. 2012 Feb 21;11:26. doi: 10.1186/1475-2859-11-26.

13.

Molecular cloning and transcriptional regulation of the Aspergillus nidulans xlnD gene encoding a beta-xylosidase.

Pérez-González JA, van Peij NN, Bezoen A, MacCabe AP, Ramón D, de Graaff LH.

Appl Environ Microbiol. 1998 Apr;64(4):1412-9.

14.

Opposite patterns of expression of two Aspergillus nidulans xylanase genes with respect to ambient pH.

MacCabe AP, Orejas M, Pérez-González JA, Ramón D.

J Bacteriol. 1998 Mar;180(5):1331-3.

15.

CreA-mediated carbon catabolite repression of beta-galactosidase formation in Aspergillus nidulans is growth rate dependent.

Ilyés H, Fekete E, Karaffa L, Fekete E, Sándor E, Szentirmai A, Kubicek CP.

FEMS Microbiol Lett. 2004 Jun 1;235(1):147-51.

16.

Transcription analysis using high-density micro-arrays of Aspergillus nidulans wild-type and creA mutant during growth on glucose or ethanol.

Mogensen J, Nielsen HB, Hofmann G, Nielsen J.

Fungal Genet Biol. 2006 Aug;43(8):593-603. Epub 2006 May 15.

PMID:
16698295
18.

SAGA complex components and acetate repression in Aspergillus nidulans.

Georgakopoulos P, Lockington RA, Kelly JM.

G3 (Bethesda). 2012 Nov;2(11):1357-67. doi: 10.1534/g3.112.003913. Epub 2012 Nov 1.

19.

The function of CreA, the carbon catabolite repressor of Aspergillus nidulans, is regulated at the transcriptional and post-transcriptional level.

Strauss J, Horvath HK, Abdallah BM, Kindermann J, Mach RL, Kubicek CP.

Mol Microbiol. 1999 Apr;32(1):169-78.

20.

Supplemental Content

Support Center