Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 189

1.

Fibroblast growth factor 9 (FGF9)-pituitary homeobox 2 (PITX2) pathway mediates transforming growth factor β (TGFβ) signaling to regulate cell proliferation in palatal mesenchyme during mouse palatogenesis.

Iwata J, Tung L, Urata M, Hacia JG, Pelikan R, Suzuki A, Ramenzoni L, Chaudhry O, Parada C, Sanchez-Lara PA, Chai Y.

J Biol Chem. 2012 Jan 20;287(4):2353-63. doi: 10.1074/jbc.M111.280974. Epub 2011 Nov 28.

2.

Identification of candidate downstream targets of TGFβ signaling during palate development by genome-wide transcript profiling.

Pelikan RC, Iwata J, Suzuki A, Chai Y, Hacia JG.

J Cell Biochem. 2013 Apr;114(4):796-807. doi: 10.1002/jcb.24417.

3.

Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects.

Ito Y, Yeo JY, Chytil A, Han J, Bringas P Jr, Nakajima A, Shuler CF, Moses HL, Chai Y.

Development. 2003 Nov;130(21):5269-80.

4.

Mice with Tak1 deficiency in neural crest lineage exhibit cleft palate associated with abnormal tongue development.

Song Z, Liu C, Iwata J, Gu S, Suzuki A, Sun C, He W, Shu R, Li L, Chai Y, Chen Y.

J Biol Chem. 2013 Apr 12;288(15):10440-50. doi: 10.1074/jbc.M112.432286. Epub 2013 Mar 4.

5.

CTGF mediates Smad-dependent transforming growth factor β signaling to regulate mesenchymal cell proliferation during palate development.

Parada C, Li J, Iwata J, Suzuki A, Chai Y.

Mol Cell Biol. 2013 Sep;33(17):3482-93. doi: 10.1128/MCB.00615-13. Epub 2013 Jul 1.

6.

Type 1 fibroblast growth factor receptor in cranial neural crest cell-derived mesenchyme is required for palatogenesis.

Wang C, Chang JY, Yang C, Huang Y, Liu J, You P, McKeehan WL, Wang F, Li X.

J Biol Chem. 2013 Jul 26;288(30):22174-83. doi: 10.1074/jbc.M113.463620. Epub 2013 Jun 10.

7.

Neural crest-specific deletion of Ldb1 leads to cleft secondary palate with impaired palatal shelf elevation.

Almaidhan A, Cesario J, Landin Malt A, Zhao Y, Sharma N, Choi V, Jeong J.

BMC Dev Biol. 2014 Jan 17;14:3. doi: 10.1186/1471-213X-14-3.

8.

Noncanonical transforming growth factor β (TGFβ) signaling in cranial neural crest cells causes tongue muscle developmental defects.

Iwata J, Suzuki A, Pelikan RC, Ho TV, Chai Y.

J Biol Chem. 2013 Oct 11;288(41):29760-70. doi: 10.1074/jbc.M113.493551. Epub 2013 Aug 15.

9.

Modulation of lipid metabolic defects rescues cleft palate in Tgfbr2 mutant mice.

Iwata J, Suzuki A, Pelikan RC, Ho TV, Sanchez-Lara PA, Chai Y.

Hum Mol Genet. 2014 Jan 1;23(1):182-93. doi: 10.1093/hmg/ddt410. Epub 2013 Aug 23.

10.

Alk5-mediated transforming growth factor β signaling acts upstream of fibroblast growth factor 10 to regulate the proliferation and maintenance of dental epithelial stem cells.

Zhao H, Li S, Han D, Kaartinen V, Chai Y.

Mol Cell Biol. 2011 May;31(10):2079-89. doi: 10.1128/MCB.01439-10. Epub 2011 Mar 14.

11.

TGFβ regulates epithelial-mesenchymal interactions through WNT signaling activity to control muscle development in the soft palate.

Iwata J, Suzuki A, Yokota T, Ho TV, Pelikan R, Urata M, Sanchez-Lara PA, Chai Y.

Development. 2014 Feb;141(4):909-17. doi: 10.1242/dev.103093.

12.

FGF9-Pitx2-FGF10 signaling controls cecal formation in mice.

Al Alam D, Sala FG, Baptista S, Galzote R, Danopoulos S, Tiozzo C, Gage P, Grikscheit T, Warburton D, Frey MR, Bellusci S.

Dev Biol. 2012 Sep 15;369(2):340-8. doi: 10.1016/j.ydbio.2012.07.008. Epub 2012 Jul 20.

13.

Gpr177-mediated Wnt Signaling Is Required for Secondary Palate Development.

Liu Y, Wang M, Zhao W, Yuan X, Yang X, Li Y, Qiu M, Zhu XJ, Zhang Z.

J Dent Res. 2015 Jul;94(7):961-7. doi: 10.1177/0022034515583532. Epub 2015 Apr 28.

PMID:
25922332
14.

Smad4-Irf6 genetic interaction and TGFβ-mediated IRF6 signaling cascade are crucial for palatal fusion in mice.

Iwata J, Suzuki A, Pelikan RC, Ho TV, Sanchez-Lara PA, Urata M, Dixon MJ, Chai Y.

Development. 2013 Mar;140(6):1220-30. doi: 10.1242/dev.089615. Epub 2013 Feb 13.

15.
16.

Ablation of the Sox11 Gene Results in Clefting of the Secondary Palate Resembling the Pierre Robin Sequence.

Huang H, Yang X, Bao M, Cao H, Miao X, Zhang X, Gan L, Qiu M, Zhang Z.

J Biol Chem. 2016 Mar 25;291(13):7107-18. doi: 10.1074/jbc.M115.690875. Epub 2016 Jan 29.

17.

Integration of comprehensive 3D microCT and signaling analysis reveals differential regulatory mechanisms of craniofacial bone development.

Ho TV, Iwata J, Ho HA, Grimes WC, Park S, Sanchez-Lara PA, Chai Y.

Dev Biol. 2015 Apr 15;400(2):180-90. doi: 10.1016/j.ydbio.2015.02.010. Epub 2015 Feb 23.

18.

Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion.

Xu X, Han J, Ito Y, Bringas P Jr, Urata MM, Chai Y.

Dev Biol. 2006 Sep 1;297(1):238-48. Epub 2006 May 19.

19.

Modulating Wnt Signaling Rescues Palate Morphogenesis in Pax9 Mutant Mice.

Li C, Lan Y, Krumlauf R, Jiang R.

J Dent Res. 2017 Oct;96(11):1273-1281. doi: 10.1177/0022034517719865. Epub 2017 Jul 10.

PMID:
28692808
20.

Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate.

Tian H, Feng J, Li J, Ho TV, Yuan Y, Liu Y, Brindopke F, Figueiredo JC, Magee W 3rd, Sanchez-Lara PA, Chai Y.

Hum Mol Genet. 2017 Mar 1;26(5):860-872. doi: 10.1093/hmg/ddx002.

PMID:
28069795

Supplemental Content

Support Center