Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 70

1.

Split-gate-structure 1T DRAM for retention characteristic improvement.

Kim G, Kim SW, Ryoo KC, Oh JH, Sun MC, Kim HW, Kwon DW, Jang JS, Jung S, Kim JH, Park BG.

J Nanosci Nanotechnol. 2011 Jul;11(7):5603-7.

PMID:
22121577
2.

Capacitorless 1T-DRAM on crystallized poly-Si TFT.

Kim MS, Cho WJ.

J Nanosci Nanotechnol. 2011 Jul;11(7):5608-11.

PMID:
22121578
3.

The Programming Optimization of Capacitorless 1T DRAM Based on the Dual-Gate TFET.

Li W, Liu H, Wang S, Chen S, Wang Q.

Nanoscale Res Lett. 2017 Sep 6;12(1):524. doi: 10.1186/s11671-017-2294-3.

4.

The productivity of mental health care: an instrumental variable approach.

Lu M.

J Ment Health Policy Econ. 1999 Jun 1;2(2):59-71.

PMID:
11967410
5.

Quantum capacitance limited vertical scaling of graphene field-effect transistor.

Xu H, Zhang Z, Wang Z, Wang S, Liang X, Peng LM.

ACS Nano. 2011 Mar 22;5(3):2340-7. doi: 10.1021/nn200026e. Epub 2011 Feb 16.

PMID:
21323320
6.

DRAM Weak Cell Characterization for Retention Time.

Kang J, Lee S, Choi B.

J Nanosci Nanotechnol. 2016 May;16(5):5092-5.

PMID:
27483878
7.

1T Pixel Using Floating-Body MOSFET for CMOS Image Sensors.

Lu GN, Tournier A, Roy F, Deschamps B.

Sensors (Basel). 2009;9(1):131-47. doi: 10.3390/s90100131. Epub 2009 Jan 7.

8.

Vertically Integrated Nanowire-Based Unified Memory.

Lee BH, Ahn DC, Kang MH, Jeon SB, Choi YK.

Nano Lett. 2016 Sep 14;16(9):5909-16. doi: 10.1021/acs.nanolett.6b02824. Epub 2016 Sep 2.

PMID:
27579769
9.

Upflow anaerobic sludge blanket reactor--a review.

Bal AS, Dhagat NN.

Indian J Environ Health. 2001 Apr;43(2):1-82. Review.

PMID:
12397675
10.

Two-silicon-nanocrystal layer memory structure with improved retention characteristics.

Nassiopoulou AG, Salonidou A.

J Nanosci Nanotechnol. 2007 Jan;7(1):368-73.

PMID:
17455506
11.

Retention characteristics of Schottky barrier tunneling transistor-nano floating gate memory with various side walls.

Won S, Son D, Kim E, Kim J, Lee K, Park K.

J Nanosci Nanotechnol. 2011 Jan;11(1):314-7.

PMID:
21446446
12.

Electrical characteristics of floating-gate memory devices with titanium nanoparticles embedded in gate oxides.

Park B, Cho K, Yun J, Koo YS, Lee JH, Kim S.

J Nanosci Nanotechnol. 2009 Mar;9(3):1904-8.

PMID:
19435057
13.

Overcoming the drawback of lower sense margin in tunnel FET based dynamic memory along with enhanced charge retention and scalability.

Navlakha N, Kranti A.

Nanotechnology. 2017 Aug 23. doi: 10.1088/1361-6528/aa8805. [Epub ahead of print]

PMID:
28832340
14.

DRAM, a p53-induced modulator of autophagy, is critical for apoptosis.

Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM.

Cell. 2006 Jul 14;126(1):121-34.

15.

Direct-write fabrication of a nanoscale digital logic element on a single nanowire.

Roy S, Gao Z.

Nanotechnology. 2010 Jun 18;21(24):245306. doi: 10.1088/0957-4484/21/24/245306. Epub 2010 May 25.

PMID:
20498519
16.

Issues of nanoelectronics: a possible roadmap.

Wang KL.

J Nanosci Nanotechnol. 2002 Jun-Aug;2(3-4):235-66. Review.

PMID:
12908252
17.

Self-aligned U-gate carbon nanotube field-effect transistor with extremely small parasitic capacitance and drain-induced barrier lowering.

Ding L, Wang Z, Pei T, Zhang Z, Wang S, Xu H, Peng F, Li Y, Peng LM.

ACS Nano. 2011 Apr 26;5(4):2512-9. doi: 10.1021/nn102091h. Epub 2011 Mar 11.

PMID:
21370813
18.

Single-electron effects in non-overlapped multiple-gate silicon-on-insulator metal-oxide-semiconductor field-effect transistors.

Lee W, Su P.

Nanotechnology. 2009 Feb 11;20(6):065202. doi: 10.1088/0957-4484/20/6/065202. Epub 2009 Jan 14.

PMID:
19417374
19.

Fabrication, characterization and simulation of high performance Si nanowire-based non-volatile memory cells.

Zhu X, Li Q, Ioannou DE, Gu D, Bonevich JE, Baumgart H, Suehle JS, Richter CA.

Nanotechnology. 2011 Jun 24;22(25):254020. doi: 10.1088/0957-4484/22/25/254020. Epub 2011 May 16.

PMID:
21572210
20.

Gate-tunable split Kondo effect in a carbon nanotube quantum dot.

Eichler A, Weiss M, Schönenberger C.

Nanotechnology. 2011 Jul 1;22(26):265204. doi: 10.1088/0957-4484/22/26/265204. Epub 2011 May 17.

PMID:
21576773

Supplemental Content

Support Center