Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 91

1.

Energy metabolism in nuclear reprogramming.

Folmes CD, Nelson TJ, Terzic A.

Biomark Med. 2011 Dec;5(6):715-29. doi: 10.2217/bmm.11.87. Review.

2.

Energy metabolism plasticity enables stemness programs.

Folmes CD, Nelson TJ, Dzeja PP, Terzic A.

Ann N Y Acad Sci. 2012 Apr;1254:82-9. doi: 10.1111/j.1749-6632.2012.06487.x. Review.

3.

Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming.

Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C, Terzic A.

Cell Metab. 2011 Aug 3;14(2):264-71. doi: 10.1016/j.cmet.2011.06.011.

4.

Nuclear reprogramming with c-Myc potentiates glycolytic capacity of derived induced pluripotent stem cells.

Folmes CD, Martinez-Fernandez A, Faustino RS, Yamada S, Perez-Terzic C, Nelson TJ, Terzic A.

J Cardiovasc Transl Res. 2013 Feb;6(1):10-21. doi: 10.1007/s12265-012-9431-2. Epub 2012 Dec 18.

5.

Metabolome and metaboproteome remodeling in nuclear reprogramming.

Folmes CD, Arrell DK, Zlatkovic-Lindor J, Martinez-Fernandez A, Perez-Terzic C, Nelson TJ, Terzic A.

Cell Cycle. 2013 Aug 1;12(15):2355-65. doi: 10.4161/cc.25509. Epub 2013 Jul 8.

6.

mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging.

Menendez JA, Vellon L, Oliveras-Ferraros C, Cufí S, Vazquez-Martin A.

Cell Cycle. 2011 Nov 1;10(21):3658-77. doi: 10.4161/cc.10.21.18128. Epub 2011 Nov 1. Review.

PMID:
22052357
7.

Mitochondrial resetting and metabolic reprogramming in induced pluripotent stem cells and mitochondrial disease modeling.

Hsu YC, Chen CT, Wei YH.

Biochim Biophys Acta. 2016 Apr;1860(4):686-93. doi: 10.1016/j.bbagen.2016.01.009. Epub 2016 Jan 15. Review.

PMID:
26779594
8.

Mitochondrial regulation in pluripotent stem cells.

Xu X, Duan S, Yi F, Ocampo A, Liu GH, Izpisua Belmonte JC.

Cell Metab. 2013 Sep 3;18(3):325-32. doi: 10.1016/j.cmet.2013.06.005. Epub 2013 Jul 11. Review.

9.

Mitochondrial and metabolic remodeling during reprogramming and differentiation of the reprogrammed cells.

Choi HW, Kim JH, Chung MK, Hong YJ, Jang HS, Seo BJ, Jung TH, Kim JS, Chung HM, Byun SJ, Han SG, Seo HG, Do JT.

Stem Cells Dev. 2015 Jun 1;24(11):1366-73. doi: 10.1089/scd.2014.0561. Epub 2015 Apr 2.

PMID:
25590788
10.
11.

The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming.

Panopoulos AD, Yanes O, Ruiz S, Kida YS, Diep D, Tautenhahn R, Herrerías A, Batchelder EM, Plongthongkum N, Lutz M, Berggren WT, Zhang K, Evans RM, Siuzdak G, Izpisua Belmonte JC.

Cell Res. 2012 Jan;22(1):168-77. doi: 10.1038/cr.2011.177. Epub 2011 Nov 8.

12.

Energy metabolism in the acquisition and maintenance of stemness.

Folmes CD, Terzic A.

Semin Cell Dev Biol. 2016 Apr;52:68-75. doi: 10.1016/j.semcdb.2016.02.010. Epub 2016 Feb 8. Review.

13.

HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2.

Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, Blümlein K, Wanker EE, Ralser M, Cramer T, Adjaye J.

Stem Cells. 2014 Feb;32(2):364-76. doi: 10.1002/stem.1552.

14.

Mitochondrial bioenergetic function and metabolic plasticity in stem cell differentiation and cellular reprogramming.

Chen CT, Hsu SH, Wei YH.

Biochim Biophys Acta. 2012 May;1820(5):571-6. doi: 10.1016/j.bbagen.2011.09.013. Epub 2011 Sep 29. Review.

PMID:
21983491
15.

Mitochondrial metabolism transition cooperates with nuclear reprogramming during induced pluripotent stem cell generation.

Liu W, Long Q, Chen K, Li S, Xiang G, Chen S, Liu X, Li Y, Yang L, Dong D, Jiang C, Feng Z, Qin D, Liu X.

Biochem Biophys Res Commun. 2013 Feb 22;431(4):767-71. doi: 10.1016/j.bbrc.2012.12.148. Epub 2013 Jan 16.

PMID:
23333381
16.

Mitofusins deficiency elicits mitochondrial metabolic reprogramming to pluripotency.

Son MJ, Kwon Y, Son MY, Seol B, Choi HS, Ryu SW, Choi C, Cho YS.

Cell Death Differ. 2015 Dec;22(12):1957-69. doi: 10.1038/cdd.2015.43. Epub 2015 Apr 17.

17.

Interference with the mitochondrial bioenergetics fuels reprogramming to pluripotency via facilitation of the glycolytic transition.

Son MJ, Jeong BR, Kwon Y, Cho YS.

Int J Biochem Cell Biol. 2013 Nov;45(11):2512-8. doi: 10.1016/j.biocel.2013.07.023. Epub 2013 Aug 9.

PMID:
23939289
18.

The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells.

Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J.

Stem Cells. 2010 Apr;28(4):721-33. doi: 10.1002/stem.404.

19.

Activation of AMP-activated protein kinase (AMPK) provides a metabolic barrier to reprogramming somatic cells into stem cells.

Vazquez-Martin A, Vellon L, Quirós PM, Cufí S, Ruiz de Galarreta E, Oliveras-Ferraros C, Martin AG, Martin-Castillo B, López-Otín C, Menendez JA.

Cell Cycle. 2012 Mar 1;11(5):974-89. doi: 10.4161/cc.11.5.19450. Epub 2012 Mar 1.

PMID:
22333578
20.

Secondary cell reprogramming systems: as years go by.

Nagy A.

Curr Opin Genet Dev. 2013 Oct;23(5):534-9. doi: 10.1016/j.gde.2013.07.004. Epub 2013 Aug 19. Review.

PMID:
23968685

Supplemental Content

Support Center