Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.

Identification of water stress genes in Pinus pinaster Ait. by controlled progressive stress and suppression-subtractive hybridization.

Perdiguero P, Collada C, Barbero Mdel C, García Casado G, Cervera MT, Soto A.

Plant Physiol Biochem. 2012 Jan;50(1):44-53. doi: 10.1016/j.plaphy.2011.09.022. Epub 2011 Oct 8.

PMID:
22099518
2.

Molecular response to water stress in two contrasting Mediterranean pines (Pinus pinaster and Pinus pinea).

Perdiguero P, Barbero Mdel C, Cervera MT, Collada C, Soto A.

Plant Physiol Biochem. 2013 Jun;67:199-208. doi: 10.1016/j.plaphy.2013.03.008. Epub 2013 Mar 28.

PMID:
23583937
3.

Adaptive consequences of human-mediated introgression for indigenous tree species: the case of a relict Pinus pinaster population.

Ramírez-Valiente JA, Robledo-Arnuncio JJ.

Tree Physiol. 2014 Dec;34(12):1376-87. doi: 10.1093/treephys/tpu097. Epub 2014 Dec 1.

PMID:
25466514
4.

Identification and characterization of water-stress-responsive genes in hydroponically grown maritime pine (Pinus pinaster) seedlings.

Dubos C, Le Provost G, Pot D, Salin F, Lalane C, Madur D, Frigerio JM, Plomion C.

Tree Physiol. 2003 Feb;23(3):169-79.

PMID:
12566267
5.
6.

Soil water stress affects both cuticular wax content and cuticle-related gene expression in young saplings of maritime pine (Pinus pinaster Ait).

Le Provost G, Domergue F, Lalanne C, Ramos Campos P, Grosbois A, Bert D, Meredieu C, Danjon F, Plomion C, Gion JM.

BMC Plant Biol. 2013 Jul 1;13:95. doi: 10.1186/1471-2229-13-95.

7.

Genetic control of functional traits related to photosynthesis and water use efficiency in Pinus pinaster Ait. drought response: integration of genome annotation, allele association and QTL detection for candidate gene identification.

de Miguel M, Cabezas JA, de María N, Sánchez-Gómez D, Guevara MÁ, Vélez MD, Sáez-Laguna E, Díaz LM, Mancha JA, Barbero MC, Collada C, Díaz-Sala C, Aranda I, Cervera MT.

BMC Genomics. 2014 Jun 12;15:464. doi: 10.1186/1471-2164-15-464.

8.

Intraspecific variation in the use of water sources by the circum-Mediterranean conifer Pinus halepensis.

Voltas J, Lucabaugh D, Chambel MR, Ferrio JP.

New Phytol. 2015 Dec;208(4):1031-41. doi: 10.1111/nph.13569. Epub 2015 Jul 21.

9.

Genetic variation of drought tolerance in Pinus pinaster at three hierarchical levels: a comparison of induced osmotic stress and field testing.

Gaspar MJ, Velasco T, Feito I, Alía R, Majada J.

PLoS One. 2013 Nov 1;8(11):e79094. doi: 10.1371/journal.pone.0079094. eCollection 2013.

10.

Transcriptional analysis of differentially expressed genes in response to stem inclination in young seedlings of pine.

Ramos P, Le Provost G, Gantz C, Plomion C, Herrera R.

Plant Biol (Stuttg). 2012 Nov;14(6):923-33. doi: 10.1111/j.1438-8677.2012.00572.x. Epub 2012 May 30.

PMID:
22646487
11.

The NAC transcription factor family in maritime pine (Pinus Pinaster): molecular regulation of two genes involved in stress responses.

Pascual MB, Cánovas FM, Ávila C.

BMC Plant Biol. 2015 Oct 24;15:254. doi: 10.1186/s12870-015-0640-0.

12.

Combined effects of defoliation and water stress on pine growth and non-structural carbohydrates.

Jacquet JS, Bosc A, O'Grady A, Jactel H.

Tree Physiol. 2014 Apr;34(4):367-76. doi: 10.1093/treephys/tpu018. Epub 2014 Apr 15.

PMID:
24736390
13.
14.

Effective gene dispersal and female reproductive success in Mediterranean maritime pine (Pinus pinaster Aiton).

González-Martínez SC, Burczyk J, Nathan R, Nanos N, Gil L, Alía R.

Mol Ecol. 2006 Dec;15(14):4577-88.

PMID:
17107484
15.

Exploring natural variation of Pinus pinaster Aiton using metabolomics: Is it possible to identify the region of origin of a pine from its metabolites?

Meijón M, Feito I, Oravec M, Delatorre C, Weckwerth W, Majada J, Valledor L.

Mol Ecol. 2016 Feb;25(4):959-76. doi: 10.1111/mec.13525. Epub 2016 Feb 11.

PMID:
26756581
16.

Molecular footprints of local adaptation in two Mediterranean conifers.

Grivet D, Sebastiani F, Alía R, Bataillon T, Torre S, Zabal-Aguirre M, Vendramin GG, González-Martínez SC.

Mol Biol Evol. 2011 Jan;28(1):101-16. doi: 10.1093/molbev/msq190. Epub 2010 Jul 23.

PMID:
20656795
17.

Differential Gene Expression Reveals Candidate Genes for Drought Stress Response in Abies alba (Pinaceae).

Behringer D, Zimmermann H, Ziegenhagen B, Liepelt S.

PLoS One. 2015 Apr 29;10(4):e0124564. doi: 10.1371/journal.pone.0124564. eCollection 2015.

18.

Physiological response to drought in radiata pine: phytohormone implication at leaf level.

De Diego N, Pérez-Alfocea F, Cantero E, Lacuesta M, Moncaleán P.

Tree Physiol. 2012 Apr;32(4):435-49. doi: 10.1093/treephys/tps029. Epub 2012 Apr 11.

PMID:
22499594
19.

Enhanced drought-tolerance in the homoploid hybrid species Pinus densata: implication for its habitat divergence from two progenitors.

Ma F, Zhao C, Milne R, Ji M, Chen L, Liu J.

New Phytol. 2010 Jan;185(1):204-16. doi: 10.1111/j.1469-8137.2009.03037.x. Epub 2009 Oct 5.

20.

Functional and genetic characterization of gas exchange and intrinsic water use efficiency in a full-sib family of Pinus pinaster Ait. in response to drought.

de Miguel M, Sánchez-Gómez D, Cervera MT, Aranda I.

Tree Physiol. 2012 Jan;32(1):94-103. doi: 10.1093/treephys/tpr122. Epub 2011 Dec 14.

PMID:
22170437

Supplemental Content

Support Center