Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 81

1.

Interaction between parallel polymer fibers insonificated by ultrasound of low/mild intensity: an analytical theory and experiments.

Wu J, Chen D, Langevin HM, Nyborg WL.

Ultrasonics. 2012 Mar;52(3):417-21. doi: 10.1016/j.ultras.2011.09.009. Epub 2011 Oct 31.

PMID:
22099253
2.

Surfactant solutions and porous substrates: spreading and imbibition.

Starov VM.

Adv Colloid Interface Sci. 2004 Nov 29;111(1-2):3-27.

PMID:
15571660
3.

Characteristics of the audio sound generated by ultrasound imaging systems.

Fatemi M, Alizad A, Greenleaf JF.

J Acoust Soc Am. 2005 Mar;117(3 Pt 1):1448-55.

PMID:
15807032
4.

Stability of 2-D colloidal particle aggregates held against flow stress in an ultrasound trap.

Kuznetsova LA, Bazou D, Coakley WT.

Langmuir. 2007 Mar 13;23(6):3009-16. Epub 2007 Feb 8.

PMID:
17286416
5.

The mechanism of the attracting acoustic radiation force on a polymer-coated gold sphere in plane progressive waves.

Mitri FG, Fellah ZE.

Eur Phys J E Soft Matter. 2008 Aug;26(4):337-43. doi: 10.1140/epje/i2007-10337-6.

PMID:
19230208
6.

A simple model of ultrasound propagation in a cavitating liquid. Part II: Primary Bjerknes force and bubble structures.

Louisnard O.

Ultrason Sonochem. 2012 Jan;19(1):66-76. doi: 10.1016/j.ultsonch.2011.06.008. Epub 2011 Jun 25.

PMID:
21764349
7.

Losses in tissue associated with finite amplitude ultrasound transmission.

Fry FJ, Dines KA, Reilly CR, Goss SA.

Ultrasound Med Biol. 1989;15(5):481-97.

PMID:
2781679
8.

Cavitation bubble-driven cell and particle behavior in an ultrasound standing wave.

Kuznetsova LA, Khanna S, Amso NN, Coakley WT, Doinikov AA.

J Acoust Soc Am. 2005 Jan;117(1):104-12.

PMID:
15704403
9.

Acoustic radiation force on a spherical contrast agent shell near a vessel porous wall--theory.

Miri AK, Mitri FG.

Ultrasound Med Biol. 2011 Feb;37(2):301-11. doi: 10.1016/j.ultrasmedbio.2010.11.006.

PMID:
21257091
10.

Predicting polymer nanofiber interactions via molecular simulations.

Buell S, Rutledge GC, Vliet KJ.

ACS Appl Mater Interfaces. 2010 Apr;2(4):1164-72. doi: 10.1021/am1000135.

PMID:
20384291
11.

Acoustic cavitation series: part six. Gas body activation.

Miller DL.

Ultrasonics. 1984 Nov;22(6):261-9.

PMID:
6506324
12.

Forces acting in the direction of propagation in pulsed ultrasound fields.

Starritt HC, Duck FA, Humphrey VF.

Phys Med Biol. 1991 Nov;36(11):1465-74.

PMID:
1754617
13.

A0 mode interaction with a plate free edge: theory and experiments at very low frequency by thickness product.

Ribay G, Catheline S, Clorennec D, Ing RK, Fink M.

J Acoust Soc Am. 2007 Aug;122(2):711-4.

PMID:
17672620
14.

Dynamic acoustic radiation force acting on cylindrical shells: theory and simulations.

Mitri FG, Fatemi M.

Ultrasonics. 2005 May;43(6):435-45. Epub 2004 Nov 30.

PMID:
15823318
15.

SBS threshold measurements and acoustic beam propagation modeling in guiding and anti-guiding single mode optical fibers.

Mermelstein MD.

Opt Express. 2009 Aug 31;17(18):16225-37. doi: 10.1364/OE.17.016225.

PMID:
19724622
16.

Interpretation of EMG changes with fatigue: facts, pitfalls, and fallacies.

Dimitrova NA, Dimitrov GV.

J Electromyogr Kinesiol. 2003 Feb;13(1):13-36. Review.

PMID:
12488084
17.

Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects.

Krasovitski B, Frenkel V, Shoham S, Kimmel E.

Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3258-63. doi: 10.1073/pnas.1015771108. Epub 2011 Feb 7.

18.

Preliminary ex vivo feasibility study on targeted cell surgery by high intensity focused ultrasound (HIFU).

Wang ZB, Wu J, Fang LQ, Wang H, Li FQ, Tian YB, Gong XB, Zhang H, Zhang L, Feng R.

Ultrasonics. 2011 Apr;51(3):369-75. doi: 10.1016/j.ultras.2010.11.002. Epub 2010 Nov 19.

PMID:
21144543
19.

Elimination of standing wave effects in ultrasound radiation force excitation in air using random carrier frequency packets.

Huber TM, Beaver NM, Helps JR.

J Acoust Soc Am. 2011 Oct;130(4):1838-43. doi: 10.1121/1.3628336.

PMID:
21973337
20.

Micro-wilhelmy and related liquid property measurements using constant-diameter nanoneedle-tipped atomic force microscope probes.

Yazdanpanah MM, Hosseini M, Pabba S, Berry SM, Dobrokhotov VV, Safir A, Keynton RS, Cohn RW.

Langmuir. 2008 Dec 2;24(23):13753-64. doi: 10.1021/la802820u.

PMID:
18986184

Supplemental Content

Support Center