Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 72

1.

Contents of mRNAs encoding endosome/lysosome components in normal human aorta and in stage II of atherogenesis: a hidden regulation.

Shchelkunova TA, Albert EA, Morozov IA, Rubtsov PM, Samokhodskaya LM, Sobenin IA, Orekhov AN, Smirnov AN.

Biochemistry (Mosc). 2011 Oct;76(10):1178-84. doi: 10.1134/S0006297911100129.

PMID:
22098244
2.

Changes in levels of gene expression in human aortal intima during atherogenesis.

Shchelkunova TA, Morozov IA, Rubtsov PM, Samokhodskaya LM, Andrianova IV, Sobenin IA, Orekhov AN, Smirnov AN.

Biochemistry (Mosc). 2013 May;78(5):463-70. doi: 10.1134/S0006297913050040.

3.

Changes of lysosomes in the earliest stages of the development of atherosclerosis.

Bobryshev YV, Shchelkunova TA, Morozov IA, Rubtsov PM, Sobenin IA, Orekhov AN, Smirnov AN.

J Cell Mol Med. 2013 May;17(5):626-35. doi: 10.1111/jcmm.12042. Epub 2013 Mar 14.

4.

Lipid regulators during atherogenesis: expression of LXR, PPAR, and SREBP mRNA in the human aorta.

Shchelkunova TA, Morozov IA, Rubtsov PM, Bobryshev YV, Sobenin IA, Orekhov AN, Andrianova IV, Smirnov AN.

PLoS One. 2013 May 23;8(5):e63374. doi: 10.1371/journal.pone.0063374. Print 2013.

5.

Coordination in gene expression during atherogenesis.

Shchelkunova TA, Morozov IA, Rubtsov PM, Samokhodskaya LM, Sobenin IA, Orekhov AN, Smirnov AN.

Biochemistry (Mosc). 2013 Aug;78(8):933-45. doi: 10.1134/S0006297913080117.

PMID:
24228883
6.

Quantitative analysis of the expression of caspase 3 and caspase 9 in different types of atherosclerotic lesions in the human aorta.

Sobenin IA, Bobryshev YV, Korobov GA, Borodachev EN, Postnov AY, Orekhov AN.

Exp Mol Pathol. 2015 Aug;99(1):1-6. doi: 10.1016/j.yexmp.2015.05.004. Epub 2015 May 8.

PMID:
25962658
7.

The content of lipoperoxidation products in normal and atherosclerotic human aorta.

Tertov VV, Kaplun VV, Mikhailova IA, Suprun IV, Orekhov AN.

Mol Cell Biochem. 2001 Sep;225(1-):21-8.

PMID:
11716360
8.

Overexpression of p62/SQSTM1 promotes the degradations of abnormally accumulated PrP mutants in cytoplasm and relieves the associated cytotoxicities via autophagy-lysosome-dependent way.

Xu Y, Zhang J, Tian C, Ren K, Yan YE, Wang K, Wang H, Chen C, Wang J, Shi Q, Dong XP.

Med Microbiol Immunol. 2014 Apr;203(2):73-84. doi: 10.1007/s00430-013-0316-z. Epub 2013 Nov 17.

PMID:
24240628
9.

[Numbers of cells and cell proliferation in intima of different human arteries].

Bobryshev IuV, Karagodin VP, Kovalevskaia ZhI, Miasoedova VA, Shapyrina EV, Saliamov VI, Kargapolova IuM, Galaktionova DIu, Mel'nichenko AA, Orekhov AN.

Tsitologiia. 2011;53(10):815-25. Russian.

PMID:
22232939
10.

Autophagy activation clears ELAVL1/HuR-mediated accumulation of SQSTM1/p62 during proteasomal inhibition in human retinal pigment epithelial cells.

Viiri J, Amadio M, Marchesi N, Hyttinen JM, Kivinen N, Sironen R, Rilla K, Akhtar S, Provenzani A, D'Agostino VG, Govoni S, Pascale A, Agostini H, Petrovski G, Salminen A, Kaarniranta K.

PLoS One. 2013 Jul 29;8(7):e69563. doi: 10.1371/journal.pone.0069563. Print 2013.

11.

Correlation between lipid deposition, immune-inflammatory cell content and MHC class II expression in diffuse intimal thickening of the human aorta.

Bobryshev YV, Andreeva ER, Mikhailova IA, Andrianova IV, Moisenovich MM, Khapchaev S, Agapov II, Sobenin IA, Lusta KA, Orekhov AN.

Atherosclerosis. 2011 Nov;219(1):171-83. doi: 10.1016/j.atherosclerosis.2011.07.016. Epub 2011 Jul 23.

PMID:
21831373
12.

Rab36 regulates the spatial distribution of late endosomes and lysosomes through a similar mechanism to Rab34.

Chen L, Hu J, Yun Y, Wang T.

Mol Membr Biol. 2010 Jan;27(1):23-30. doi: 10.3109/09687680903417470.

PMID:
19961360
13.

Glycosphingolipid accumulation in the aortic wall is another feature of human atherosclerosis.

Mukhin DN, Chao FF, Kruth HS.

Arterioscler Thromb Vasc Biol. 1995 Oct;15(10):1607-15.

14.

LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells.

Jiang P, Mizushima N.

Methods. 2015 Mar;75:13-8. doi: 10.1016/j.ymeth.2014.11.021. Epub 2014 Dec 5.

PMID:
25484342
15.

The late endosome/lysosome-anchored p18-mTORC1 pathway controls terminal maturation of lysosomes.

Takahashi Y, Nada S, Mori S, Soma-Nagae T, Oneyama C, Okada M.

Biochem Biophys Res Commun. 2012 Jan 27;417(4):1151-7. doi: 10.1016/j.bbrc.2011.12.082. Epub 2011 Dec 29.

PMID:
22227194
16.

A potential role for sterol 27-hydroxylase in atherogenesis.

Shanahan CM, Carpenter KL, Cary NR.

Atherosclerosis. 2001 Feb 1;154(2):269-76.

PMID:
11166758
17.

Induction of 15-lipoxygenase mRNA and protein in early atherosclerotic lesions.

Hiltunen T, Luoma J, Nikkari T, Ylä-Herttuala S.

Circulation. 1995 Dec 1;92(11):3297-303.

18.

Monocyte chemotactic protein-1 gene and protein expression in atherogenesis of hypercholesterolemic rabbits.

Chen YL, Chang YJ, Jiang MJ.

Atherosclerosis. 1999 Mar;143(1):115-23.

PMID:
10208486
19.

Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk.

Petherick KJ, Williams AC, Lane JD, Ordóñez-Morán P, Huelsken J, Collard TJ, Smartt HJ, Batson J, Malik K, Paraskeva C, Greenhough A.

EMBO J. 2013 Jul 3;32(13):1903-16. doi: 10.1038/emboj.2013.123. Epub 2013 Jun 4.

20.

Supplemental Content

Support Center