Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 114

1.

Agonist-induced PKC phosphorylation regulates GluK2 SUMOylation and kainate receptor endocytosis.

Konopacki FA, Jaafari N, Rocca DL, Wilkinson KA, Chamberlain S, Rubin P, Kantamneni S, Mellor JR, Henley JM.

Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19772-7. doi: 10.1073/pnas.1111575108. Epub 2011 Nov 16.

2.

SUMOylation of the kainate receptor subunit GluK2 contributes to the activation of the MLK3-JNK3 pathway following kainate stimulation.

Zhu QJ, Xu Y, Du CP, Hou XY.

FEBS Lett. 2012 May 7;586(9):1259-64. doi: 10.1016/j.febslet.2012.03.048. Epub 2012 Mar 31.

3.

SUMOylation and phosphorylation of GluK2 regulate kainate receptor trafficking and synaptic plasticity.

Chamberlain SE, González-González IM, Wilkinson KA, Konopacki FA, Kantamneni S, Henley JM, Mellor JR.

Nat Neurosci. 2012 Jun;15(6):845-52. doi: 10.1038/nn.3089.

4.

Modification and movement: Phosphorylation and SUMOylation regulate endocytosis of GluK2-containing kainate receptors.

Wilkinson KA, Konopacki F, Henley JM.

Commun Integr Biol. 2012 Mar 1;5(2):223-6. doi: 10.4161/cib.19195.

5.

SUMOylation regulates kainate-receptor-mediated synaptic transmission.

Martin S, Nishimune A, Mellor JR, Henley JM.

Nature. 2007 May 17;447(7142):321-5. Epub 2007 May 7.

6.

Kainate receptor post-translational modifications differentially regulate association with 4.1N to control activity-dependent receptor endocytosis.

Copits BA, Swanson GT.

J Biol Chem. 2013 Mar 29;288(13):8952-65. doi: 10.1074/jbc.M112.440719. Epub 2013 Feb 11.

7.

Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation.

Sun H, Lu L, Zuo Y, Wang Y, Jiao Y, Zeng WZ, Huang C, Zhu MX, Zamponi GW, Zhou T, Xu TL, Cheng J, Li Y.

Nat Commun. 2014 Sep 19;5:4980. doi: 10.1038/ncomms5980.

8.

Differential regulation of kainate receptor trafficking by phosphorylation of distinct sites on GluR6.

Nasu-Nishimura Y, Jaffe H, Isaac JT, Roche KW.

J Biol Chem. 2010 Jan 22;285(4):2847-56. doi: 10.1074/jbc.M109.081141. Epub 2009 Nov 17.

9.

Tyrosine phosphorylation of GluK2 up-regulates kainate receptor-mediated responses and downstream signaling after brain ischemia.

Zhu QJ, Kong FS, Xu H, Wang Y, Du CP, Sun CC, Liu Y, Li T, Hou XY.

Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13990-5. doi: 10.1073/pnas.1403493111. Epub 2014 Sep 8.

10.

Electrophysiological effects of kainic acid on vasopressin-enhanced green fluorescent protein and oxytocin-monomeric red fluorescent protein 1 neurones isolated from the supraoptic nucleus in transgenic rats.

Ohkubo J, Ohbuchi T, Yoshimura M, Maruyama T, Ishikura T, Matsuura T, Suzuki H, Ueta Y.

J Neuroendocrinol. 2014 Jan;26(1):43-51. doi: 10.1111/jne.12128.

PMID:
24341559
11.

Activation of group I metabotropic glutamate receptors potentiates heteromeric kainate receptors.

Rojas A, Wetherington J, Shaw R, Serrano G, Swanger S, Dingledine R.

Mol Pharmacol. 2013 Jan;83(1):106-21. doi: 10.1124/mol.112.081802. Epub 2012 Oct 11.

12.

Parkin regulates kainate receptors by interacting with the GluK2 subunit.

Maraschi A, Ciammola A, Folci A, Sassone F, Ronzitti G, Cappelletti G, Silani V, Sato S, Hattori N, Mazzanti M, Chieregatti E, Mulle C, Passafaro M, Sassone J.

Nat Commun. 2014 Oct 15;5:5182. doi: 10.1038/ncomms6182.

13.

GluK2-mediated excitability within the superficial layers of the entorhinal cortex.

Beed PS, Salmen B, Schmitz D.

PLoS One. 2009;4(5):e5576. doi: 10.1371/journal.pone.0005576. Epub 2009 May 18. Erratum in: PLoS One. 2009;4(6). doi: 10.1371/annotation/40012908-73d7-4bfc-8731-d24ec701dca4.

14.

Identification of critical functional determinants of kainate receptor modulation by auxiliary protein Neto2.

Griffith TN, Swanson GT.

J Physiol. 2015 Nov 15;593(22):4815-33. doi: 10.1113/JP271103. Epub 2015 Sep 20.

15.

Agonist binding to the GluK5 subunit is sufficient for functional surface expression of heteromeric GluK2/GluK5 kainate receptors.

Fisher JL, Housley PR.

Cell Mol Neurobiol. 2013 Nov;33(8):1099-108. doi: 10.1007/s10571-013-9976-x. Epub 2013 Aug 23.

16.

Mapping the ligand binding sites of kainate receptors: molecular determinants of subunit-selective binding of the antagonist [3H]UBP310.

Atlason PT, Scholefield CL, Eaves RJ, Mayo-Martin MB, Jane DE, Molnár E.

Mol Pharmacol. 2010 Dec;78(6):1036-45. doi: 10.1124/mol.110.067934. Epub 2010 Sep 13.

17.

PKC-dependent autoregulation of membrane kainate receptors.

Rivera R, Rozas JL, Lerma J.

EMBO J. 2007 Oct 17;26(20):4359-67. Epub 2007 Sep 27.

18.

Regulation of mGluR7 trafficking by SUMOylation in neurons.

Choi JH, Park JY, Park SP, Lee H, Han S, Park KH, Suh YH.

Neuropharmacology. 2016 Mar;102:229-35. doi: 10.1016/j.neuropharm.2015.11.021. Epub 2015 Nov 26.

PMID:
26631532
19.

A kainate receptor subunit promotes the recycling of the neuron-specific K+-Cl- co-transporter KCC2 in hippocampal neurons.

Pressey JC, Mahadevan V, Khademullah CS, Dargaei Z, Chevrier J, Ye W, Huang M, Chauhan AK, Meas SJ, Uvarov P, Airaksinen MS, Woodin MA.

J Biol Chem. 2017 Apr 14;292(15):6190-6201. doi: 10.1074/jbc.M116.767236. Epub 2017 Feb 24.

PMID:
28235805
20.

Assembly and intracellular distribution of kainate receptors is determined by RNA editing and subunit composition.

Ball SM, Atlason PT, Shittu-Balogun OO, Molnár E.

J Neurochem. 2010 Sep;114(6):1805-18. doi: 10.1111/j.1471-4159.2010.06895.x. Epub 2010 Jul 30.

Supplemental Content

Support Center