Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 121

1.

A quantitative model for cyclin-dependent kinase control of the cell cycle: revisited.

Uhlmann F, Bouchoux C, López-Avilés S.

Philos Trans R Soc Lond B Biol Sci. 2011 Dec 27;366(1584):3572-83. doi: 10.1098/rstb.2011.0082. Review.

2.

Differential susceptibility of yeast S and M phase CDK complexes to inhibitory tyrosine phosphorylation.

Keaton MA, Bardes ES, Marquitz AR, Freel CD, Zyla TR, Rudolph J, Lew DJ.

Curr Biol. 2007 Jul 17;17(14):1181-9. Epub 2007 Jul 5.

3.

A quantitative model for ordered Cdk substrate dephosphorylation during mitotic exit.

Bouchoux C, Uhlmann F.

Cell. 2011 Nov 11;147(4):803-14. doi: 10.1016/j.cell.2011.09.047.

4.

The Cdk/cDc14 module controls activation of the Yen1 holliday junction resolvase to promote genome stability.

Eissler CL, Mazón G, Powers BL, Savinov SN, Symington LS, Hall MC.

Mol Cell. 2014 Apr 10;54(1):80-93. doi: 10.1016/j.molcel.2014.02.012. Epub 2014 Mar 13.

5.

Temporal control of the dephosphorylation of Cdk substrates by mitotic exit pathways in budding yeast.

Jin F, Liu H, Liang F, Rizkallah R, Hurt MM, Wang Y.

Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16177-82. doi: 10.1073/pnas.0808719105. Epub 2008 Oct 9.

6.

CDK Substrate Phosphorylation and Ordering the Cell Cycle.

Swaffer MP, Jones AW, Flynn HR, Snijders AP, Nurse P.

Cell. 2016 Dec 15;167(7):1750-1761.e16. doi: 10.1016/j.cell.2016.11.034.

7.

[Molecular mechanisms controlling the cell cycle: fundamental aspects and implications for oncology].

Viallard JF, Lacombe F, Belloc F, Pellegrin JL, Reiffers J.

Cancer Radiother. 2001 Apr;5(2):109-29. Review. French.

PMID:
11355576
8.

Identification of Cdk targets that control cytokinesis.

Kuilman T, Maiolica A, Godfrey M, Scheidel N, Aebersold R, Uhlmann F.

EMBO J. 2015 Jan 2;34(1):81-96. doi: 10.15252/embj.201488958. Epub 2014 Nov 4.

9.

Multiple phosphorylation of Rad9 by CDK is required for DNA damage checkpoint activation.

Wang G, Tong X, Weng S, Zhou H.

Cell Cycle. 2012 Oct 15;11(20):3792-800. doi: 10.4161/cc.21987.

11.

A single cyclin-CDK complex is sufficient for both mitotic and meiotic progression in fission yeast.

Gutiérrez-Escribano P, Nurse P.

Nat Commun. 2015 Apr 20;6:6871. doi: 10.1038/ncomms7871.

12.

Dual control of Yen1 nuclease activity and cellular localization by Cdk and Cdc14 prevents genome instability.

Blanco MG, Matos J, West SC.

Mol Cell. 2014 Apr 10;54(1):94-106. doi: 10.1016/j.molcel.2014.02.011. Epub 2014 Mar 13.

13.
14.

Cyclin/Cdk complexes: their involvement in cell cycle progression and mitotic division.

John PC, Mews M, Moore R.

Protoplasma. 2001;216(3-4):119-42. Review.

PMID:
11732181
15.

Late-G1 cyclin-CDK activity is essential for control of cell morphogenesis in budding yeast.

Moffat J, Andrews B.

Nat Cell Biol. 2004 Jan;6(1):59-66. Epub 2003 Dec 14.

PMID:
14688790
16.

G1 cyclin driven DNA replication.

Palou R, Malik A, Palou G, Zeng F, Ren P, Quintana DG.

Cell Cycle. 2015;14(24):3842-50. doi: 10.1080/15384101.2015.1070995.

17.

Periodic cyclin-Cdk activity entrains an autonomous Cdc14 release oscillator.

Lu Y, Cross FR.

Cell. 2010 Apr 16;141(2):268-79. doi: 10.1016/j.cell.2010.03.021.

18.

Mitotic expression of Spo13 alters M-phase progression and nucleolar localization of Cdc14 in budding yeast.

Varela E, Schlecht U, Moina A, Fackenthal JD, Washburn BK, Niederhauser-Wiederkehr C, Tsai-Pflugfelder M, Primig M, Gasser SM, Esposito RE.

Genetics. 2010 Jul;185(3):841-54. doi: 10.1534/genetics.109.113746. Epub 2010 Apr 20.

19.

Budding yeast Swe1 is involved in the control of mitotic spindle elongation and is regulated by Cdc14 phosphatase during mitosis.

Raspelli E, Cassani C, Chiroli E, Fraschini R.

J Biol Chem. 2015 Jan 2;290(1):1-12. doi: 10.1074/jbc.M114.590984. Epub 2014 Nov 18. Erratum in: J Biol Chem. 2015 Mar 6;290(10):6006.

Supplemental Content

Support Center