Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 183

1.

Tomato plants overexpressing cryptochrome 2 reveal altered expression of energy and stress-related gene products in response to diurnal cues.

Lopez L, Carbone F, Bianco L, Giuliano G, Facella P, Perrotta G.

Plant Cell Environ. 2012 May;35(5):994-1012. doi: 10.1111/j.1365-3040.2011.02467.x.

2.

Diurnal and circadian rhythms in the tomato transcriptome and their modulation by cryptochrome photoreceptors.

Facella P, Lopez L, Carbone F, Galbraith DW, Giuliano G, Perrotta G.

PLoS One. 2008 Jul 30;3(7):e2798. doi: 10.1371/journal.pone.0002798.

3.

Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content.

Giliberto L, Perrotta G, Pallara P, Weller JL, Fraser PD, Bramley PM, Fiore A, Tavazza M, Giuliano G.

Plant Physiol. 2005 Jan;137(1):199-208.

4.

CRY1a influences the diurnal transcription of photoreceptor genes in tomato plants after gibberellin treatment.

Facella P, Daddiego L, Perrotta G.

Plant Signal Behav. 2012 Aug;7(8):1034-6. doi: 10.4161/psb.20657.

5.

Expressing yeast SAMdc gene confers broad changes in gene expression and alters fatty acid composition in tomato fruit.

Kolotilin I, Koltai H, Bar-Or C, Chen L, Nahon S, Shlomo H, Levin I, Reuveni M.

Physiol Plant. 2011 Jul;142(3):211-23. doi: 10.1111/j.1399-3054.2011.01458.x.

PMID:
21338368
6.

Cryptochrome 1 regulates growth and development in Brassica through alteration in the expression of genes involved in light, phytohormone and stress signalling.

Sharma P, Chatterjee M, Burman N, Khurana JP.

Plant Cell Environ. 2014 Apr;37(4):961-77. doi: 10.1111/pce.12212.

PMID:
24117455
7.

Gibberellin and auxin influence the diurnal transcription pattern of photoreceptor genes via CRY1a in tomato.

Facella P, Daddiego L, Giuliano G, Perrotta G.

PLoS One. 2012;7(1):e30121. doi: 10.1371/journal.pone.0030121.

8.

Overexpression of violaxanthin de-epoxidase gene alleviates photoinhibition of PSII and PSI in tomato during high light and chilling stress.

Han H, Gao S, Li B, Dong XC, Feng HL, Meng QW.

J Plant Physiol. 2010 Feb 15;167(3):176-83. doi: 10.1016/j.jplph.2009.08.009.

PMID:
19767125
9.

Salt and genotype impact on plant physiology and root proteome variations in tomato.

Manaa A, Ben Ahmed H, Valot B, Bouchet JP, Aschi-Smiti S, Causse M, Faurobert M.

J Exp Bot. 2011 May;62(8):2797-813. doi: 10.1093/jxb/erq460.

10.

Systemin-dependent salinity tolerance in tomato: evidence of specific convergence of abiotic and biotic stress responses.

Orsini F, Cascone P, De Pascale S, Barbieri G, Corrado G, Rao R, Maggio A.

Physiol Plant. 2010 Jan;138(1):10-21. doi: 10.1111/j.1399-3054.2009.01292.x.

PMID:
19843237
11.

SlARF4, an auxin response factor involved in the control of sugar metabolism during tomato fruit development.

Sagar M, Chervin C, Mila I, Hao Y, Roustan JP, Benichou M, Gibon Y, Biais B, Maury P, Latché A, Pech JC, Bouzayen M, Zouine M.

Plant Physiol. 2013 Mar;161(3):1362-74. doi: 10.1104/pp.113.213843.

12.

Transcriptional regulation of tocopherol biosynthesis in tomato.

Quadrana L, Almeida J, Otaiza SN, Duffy T, Corrêa da Silva JV, de Godoy F, Asís R, Bermúdez L, Fernie AR, Carrari F, Rossi M.

Plant Mol Biol. 2013 Feb;81(3):309-25. doi: 10.1007/s11103-012-0001-4.

PMID:
23247837
13.
14.

Constitutive accumulation of zeaxanthin in tomato alleviates salt stress-induced photoinhibition and photooxidation.

Zhang QY, Wang LY, Kong FY, Deng YS, Li B, Meng QW.

Physiol Plant. 2012 Nov;146(3):363-73. doi: 10.1111/j.1399-3054.2012.01645.x.

PMID:
22578286
15.

Conversion of MapMan to allow the analysis of transcript data from Solanaceous species: effects of genetic and environmental alterations in energy metabolism in the leaf.

Urbanczyk-Wochniak E, Usadel B, Thimm O, Nunes-Nesi A, Carrari F, Davy M, Bläsing O, Kowalczyk M, Weicht D, Polinceusz A, Meyer S, Stitt M, Fernie AR.

Plant Mol Biol. 2006 Mar;60(5):773-92.

PMID:
16649112
16.

A harpin-induced ethylene-responsive factor regulates plant growth and responses to biotic and abiotic stresses.

Chuang HW, Harnrak A, Chen YC, Hsu CM.

Biochem Biophys Res Commun. 2010 Nov 12;402(2):414-20. doi: 10.1016/j.bbrc.2010.10.047.

PMID:
20951117
17.

The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato.

Orellana S, Yañez M, Espinoza A, Verdugo I, González E, Ruiz-Lara S, Casaretto JA.

Plant Cell Environ. 2010 Dec;33(12):2191-208. doi: 10.1111/j.1365-3040.2010.02220.x.

18.

Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar.

Sun W, Xu X, Zhu H, Liu A, Liu L, Li J, Hua X.

Plant Cell Physiol. 2010 Jun;51(6):997-1006. doi: 10.1093/pcp/pcq056.

PMID:
20410049
19.

Response to nitrate/ammonium nutrition of tomato (Solanum lycopersicum L.) plants overexpressing a prokaryotic NH4(+)-dependent asparagine synthetase.

Martínez-Andújar C, Ghanem ME, Albacete A, Pérez-Alfocea F.

J Plant Physiol. 2013 May 1;170(7):676-87. doi: 10.1016/j.jplph.2012.12.011.

PMID:
23394787
20.

Maturity and ripening-stage specific modulation of tomato (Solanum lycopersicum) fruit transcriptome.

Srivastava A, Gupta AK, Datsenka T, Mattoo AK, Handa AK.

GM Crops. 2010 Jul-Sep;1(4):237-49. doi: 10.4161/gmcr.1.4.13737.

PMID:
21844679
Items per page

Supplemental Content

Support Center