Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 79

1.

SAGA and ATAC histone acetyl transferase complexes regulate distinct sets of genes and ATAC defines a class of p300-independent enhancers.

Krebs AR, Karmodiya K, Lindahl-Allen M, Struhl K, Tora L.

Mol Cell. 2011 Nov 4;44(3):410-23. doi: 10.1016/j.molcel.2011.08.037.

2.

The metazoan ATAC and SAGA coactivator HAT complexes regulate different sets of inducible target genes.

Nagy Z, Riss A, Fujiyama S, Krebs A, Orpinell M, Jansen P, Cohen A, Stunnenberg HG, Kato S, Tora L.

Cell Mol Life Sci. 2010 Feb;67(4):611-28. doi: 10.1007/s00018-009-0199-8.

PMID:
19936620
3.

Subunits of ADA-two-A-containing (ATAC) or Spt-Ada-Gcn5-acetyltrasferase (SAGA) Coactivator Complexes Enhance the Acetyltransferase Activity of GCN5.

Riss A, Scheer E, Joint M, Trowitzsch S, Berger I, Tora L.

J Biol Chem. 2015 Nov 27;290(48):28997-9009. doi: 10.1074/jbc.M115.668533.

4.
5.

Human ATAC Is a GCN5/PCAF-containing acetylase complex with a novel NC2-like histone fold module that interacts with the TATA-binding protein.

Wang YL, Faiola F, Xu M, Pan S, Martinez E.

J Biol Chem. 2008 Dec 5;283(49):33808-15. doi: 10.1074/jbc.M806936200.

8.

Functions of SAGA in development and disease.

Wang L, Dent SY.

Epigenomics. 2014 Jun;6(3):329-39. doi: 10.2217/epi.14.22. Review.

9.

Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation.

Jin Q, Yu LR, Wang L, Zhang Z, Kasper LH, Lee JE, Wang C, Brindle PK, Dent SY, Ge K.

EMBO J. 2011 Jan 19;30(2):249-62. doi: 10.1038/emboj.2010.318.

10.

Post-transcription initiation function of the ubiquitous SAGA complex in tissue-specific gene activation.

Weake VM, Dyer JO, Seidel C, Box A, Swanson SK, Peak A, Florens L, Washburn MP, Abmayr SM, Workman JL.

Genes Dev. 2011 Jul 15;25(14):1499-509. doi: 10.1101/gad.2046211.

11.

The Drosophila NURF remodelling and the ATAC histone acetylase complexes functionally interact and are required for global chromosome organization.

Carré C, Ciurciu A, Komonyi O, Jacquier C, Fagegaltier D, Pidoux J, Tricoire H, Tora L, Boros IM, Antoniewski C.

EMBO Rep. 2008 Feb;9(2):187-92.

13.

Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition.

Wang F, Marshall CB, Ikura M.

Cell Mol Life Sci. 2013 Nov;70(21):3989-4008. doi: 10.1007/s00018-012-1254-4. Review.

PMID:
23307074
14.

The ATAC acetyl transferase complex controls mitotic progression by targeting non-histone substrates.

Orpinell M, Fournier M, Riss A, Nagy Z, Krebs AR, Frontini M, Tora L.

EMBO J. 2010 Jul 21;29(14):2381-94. doi: 10.1038/emboj.2010.125.

15.

TATA-binding protein-free TAF-containing complex (TFTC) and p300 are both required for efficient transcriptional activation.

Hardy S, Brand M, Mittler G, Yanagisawa J, Kato S, Meisterernst M, Tora L.

J Biol Chem. 2002 Sep 6;277(36):32875-82.

16.

Direct inhibition of Gcn5 protein catalytic activity by polyglutamine-expanded ataxin-7.

Burke TL, Miller JL, Grant PA.

J Biol Chem. 2013 Nov 22;288(47):34266-75. doi: 10.1074/jbc.M113.487538.

18.

Is histone acetylation the most important physiological function for CBP and p300?

Bedford DC, Brindle PK.

Aging (Albany NY). 2012 Apr;4(4):247-55.

19.
20.

The STAGA subunit ADA2b is an important regulator of human GCN5 catalysis.

Gamper AM, Kim J, Roeder RG.

Mol Cell Biol. 2009 Jan;29(1):266-80. doi: 10.1128/MCB.00315-08.

Items per page

Supplemental Content

Support Center