Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Polymers containing hydroxamate groups: nanoreactors for hydrolysis of phosphoryl esters.

Mello RS, Orth ES, Loh W, Fiedler HD, Nome F.

Langmuir. 2011 Dec 20;27(24):15112-9. doi: 10.1021/la203437j. Epub 2011 Nov 22.

PMID:
22053995
2.

The mechanism of dephosphorylation of bis(2,4-dinitrophenyl) phosphate in mixed micelles of cationic surfactants and lauryl hydroxamic acid.

Silva M, Mello RS, Farrukh MA, Venturini J, Bunton CA, Milagre HM, Eberlin MN, Fiedler HD, Nome F.

J Org Chem. 2009 Nov 6;74(21):8254-60. doi: 10.1021/jo9017638.

PMID:
19788191
3.

From α-nucleophiles to functionalized aggregates: exploring the reactivity of hydroxamate ion towards esterolytic reactions in micelles.

Singh N, Karpichev Y, Sharma R, Gupta B, Sahu AK, Satnami ML, Ghosh KK.

Org Biomol Chem. 2015 Mar 14;13(10):2827-48. doi: 10.1039/c4ob02067g. Review.

PMID:
25597899
4.

Nucleophilic attack of salicylhydroxamate ion at C=O and P=O centers in cationic micellar media.

Satnami ML, Dhritlahre S, Nagwanshi R, Karbhal I, Ghosh KK, Nome F.

J Phys Chem B. 2010 Dec 23;114(50):16759-65. doi: 10.1021/jp1066549. Epub 2010 Nov 24.

PMID:
21105690
5.

Models for biological phosphoryl transfer.

Williams NH.

Biochim Biophys Acta. 2004 Mar 11;1697(1-2):279-87. Review.

PMID:
15023368
6.

Dephosphorylation reactions of mono-, di-, and triesters of 2,4-dinitrophenyl phosphate with deferoxamine and benzohydroxamic acid.

Medeiros M, Orth ES, Manfredi AM, Pavez P, Micke GA, Kirby AJ, Nome F.

J Org Chem. 2012 Dec 7;77(23):10907-13. doi: 10.1021/jo302374q. Epub 2012 Nov 28.

PMID:
23167539
7.

Enhanced nucleophilic reactivity of hydroxamate ions in some novel micellar systems for the cleavage of parathion.

Ghosh KK, Sinha D, Satnami ML, Dubey DK, Shrivastava A, Palepu RM, Dafonte PR.

J Colloid Interface Sci. 2006 Sep 15;301(2):564-8. Epub 2006 Jun 7.

PMID:
16797580
8.

Physicochemical properties and supernucleophilicity of oxime-functionalized surfactants: hydrolytic catalysts toward dephosphorylation of di- and triphosphate esters.

Singh N, Karpichev Y, Gupta B, Satnami ML, Marek J, Kuca K, Ghosh KK.

J Phys Chem B. 2013 Apr 11;117(14):3806-17. doi: 10.1021/jp310010q. Epub 2013 Mar 27.

PMID:
23480470
9.

Polymeric enzyme mimics: catalytic activity of ribose-containing polymers for a phosphate substrate.

Han MJ, Yoo KS, Kim YH, Chang JY.

Org Biomol Chem. 2003 Jul 7;1(13):2276-82.

PMID:
12945697
10.

Dephosphorylation reactions with deferoxamine, a potential chemical nuclease.

Orth ES, Medeiros M, Bortolotto T, Terenzi H, Kirby AJ, Nome F.

J Org Chem. 2011 Dec 16;76(24):10345-8. doi: 10.1021/jo202074y. Epub 2011 Nov 15.

PMID:
22049907
11.

The rate of hydrolysis of phosphomonoester dianions and the exceptional catalytic proficiencies of protein and inositol phosphatases.

Lad C, Williams NH, Wolfenden R.

Proc Natl Acad Sci U S A. 2003 May 13;100(10):5607-10. Epub 2003 Apr 29.

12.
13.

Nucleophilic dephosphorylation of p-nitrophenyl diphenyl phosphate in cationic micellar media.

Ghosh KK, Sinha D, Satnami ML, Dubey DK, Rodriguez-Dafonte P, Mundhara GL.

Langmuir. 2005 Sep 13;21(19):8664-9.

PMID:
16142945
14.
15.

Mechanism of phosphoanhydride cleavage by baculovirus phosphatase.

Martins A, Shuman S.

J Biol Chem. 2000 Nov 10;275(45):35070-6.

16.

Selenium-mediated micellar catalyst: an efficient enzyme model for glutathione peroxidase-like catalysis.

Huang X, Dong Z, Liu J, Mao S, Xu J, Luo G, Shen J.

Langmuir. 2007 Jan 30;23(3):1518-22.

PMID:
17241082
17.

3-hydroxybenzene 1,2,4-trisphosphate, a novel second messenger mimic and unusual substrate for type-I myo-inositol 1,4,5-trisphosphate 5-phosphatase: Synthesis and physicochemistry.

Mills SJ, Dozol H, Vandeput F, Backers K, Woodman T, Erneux C, Spiess B, Potter BV.

Chembiochem. 2006 Nov;7(11):1696-706.

PMID:
16964627
18.

Solubilization of octane in electrostatically-formed surfactant-polymer complexes.

Zhang H, Zeeb B, Salminen H, Feng F, Weiss J.

J Colloid Interface Sci. 2014 Mar 1;417:9-17. doi: 10.1016/j.jcis.2013.11.018. Epub 2013 Nov 18.

PMID:
24407654
19.

Bioinspired FeIIICdII and FeIIIHgII complexes: synthesis, characterization and promiscuous catalytic activity evaluation.

Xavier FR, Peralta RA, Bortoluzzi AJ, Drago V, Castellano EE, Haase W, Tomkowicz Z, Neves A.

J Inorg Biochem. 2011 Dec;105(12):1740-52. doi: 10.1016/j.jinorgbio.2011.08.017. Epub 2011 Aug 28.

PMID:
22000789
20.

Biocatalysis in the development of functional polymer-ceramic nanocomposites.

Ford C, Singh M, Lawson L, He J, John V, Lu Y, Papadopoulos K, McPherson G, Bose A.

Colloids Surf B Biointerfaces. 2004 Dec 10;39(3):143-50.

PMID:
15556343

Supplemental Content

Support Center