Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 66

1.

Functional correlations of pathogenesis-driven gene expression signatures in tuberculosis.

Maertzdorf J, Ota M, Repsilber D, Mollenkopf HJ, Weiner J, Hill PC, Kaufmann SH.

PLoS One. 2011;6(10):e26938. doi: 10.1371/journal.pone.0026938. Epub 2011 Oct 28.

2.

Common patterns and disease-related signatures in tuberculosis and sarcoidosis.

Maertzdorf J, Weiner J 3rd, Mollenkopf HJ; TBornotTB Network, Bauer T, Prasse A, Müller-Quernheim J, Kaufmann SH.

Proc Natl Acad Sci U S A. 2012 May 15;109(20):7853-8. doi: 10.1073/pnas.1121072109. Epub 2012 Apr 30.

3.

An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis.

Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T, Wilkinson KA, Banchereau R, Skinner J, Wilkinson RJ, Quinn C, Blankenship D, Dhawan R, Cush JJ, Mejias A, Ramilo O, Kon OM, Pascual V, Banchereau J, Chaussabel D, O'Garra A.

Nature. 2010 Aug 19;466(7309):973-7. doi: 10.1038/nature09247.

4.

[Frontier of mycobacterium research--host vs. mycobacterium].

Okada M, Shirakawa T.

Kekkaku. 2005 Sep;80(9):613-29. Japanese.

PMID:
16245793
5.

Human gene expression profiles of susceptibility and resistance in tuberculosis.

Maertzdorf J, Repsilber D, Parida SK, Stanley K, Roberts T, Black G, Walzl G, Kaufmann SH.

Genes Immun. 2011 Jan;12(1):15-22. doi: 10.1038/gene.2010.51. Epub 2010 Sep 23.

PMID:
20861863
6.

A predictive signature gene set for discriminating active from latent tuberculosis in Warao Amerindian children.

Verhagen LM, Zomer A, Maes M, Villalba JA, Del Nogal B, Eleveld M, van Hijum SA, de Waard JH, Hermans PW.

BMC Genomics. 2013 Feb 1;14:74. doi: 10.1186/1471-2164-14-74.

7.

A helicopter perspective on TB biomarkers: pathway and process based analysis of gene expression data provides new insight into TB pathogenesis.

Joosten SA, Fletcher HA, Ottenhoff TH.

PLoS One. 2013 Sep 16;8(9):e73230. doi: 10.1371/journal.pone.0073230. eCollection 2013.

8.

Association of Fc gamma receptor IIIB, but not of Fc gamma receptor IIA and IIIA polymorphisms with systemic lupus erythematosus in Japanese.

Hatta Y, Tsuchiya N, Ohashi J, Matsushita M, Fujiwara K, Hagiwara K, Juji T, Tokunaga K.

Genes Immun. 1999 Sep;1(1):53-60.

9.

HLA DRB1*1503 allelic haplotype predominance and associated immunodysregulation in systemic lupus erythematosus.

Suggs MJ, Majithia V, Lewis RE, Cruse JM.

Exp Mol Pathol. 2011 Oct;91(2):548-62. doi: 10.1016/j.yexmp.2011.03.006. Epub 2011 Apr 8.

PMID:
21497601
10.

TIRAP (MAL) S180L polymorphism is a common protective factor against developing tuberculosis and systemic lupus erythematosus.

Castiblanco J, Varela DC, Castaño-Rodríguez N, Rojas-Villarraga A, Hincapié ME, Anaya JM.

Infect Genet Evol. 2008 Sep;8(5):541-4. doi: 10.1016/j.meegid.2008.03.001. Epub 2008 Mar 12.

PMID:
18417424
11.

Significance of MHC class II haplotypes and IgG Fc receptors in SLE.

Hirose S, Jiang Y, Nishimura H, Shirai T.

Springer Semin Immunopathol. 2006 Oct;28(2):163-74. Epub 2006 Sep 14. Review.

PMID:
16972051
12.

Protein interaction for an interferon-inducible systemic lupus associated gene, IFIT1.

Ye S, Pang H, Gu YY, Hua J, Chen XG, Bao CD, Wang Y, Zhang W, Qian J, Tsao BP, Hahn BH, Chen SL, Rao ZH, Shen N.

Rheumatology (Oxford). 2003 Oct;42(10):1155-63. Epub 2003 May 30.

PMID:
12777642
13.

The dual role of biomarkers for understanding basic principles and devising novel intervention strategies in tuberculosis.

Weiner J, Maertzdorf J, Kaufmann SH.

Ann N Y Acad Sci. 2013 Apr;1283:22-9. doi: 10.1111/j.1749-6632.2012.06802.x. Epub 2012 Nov 26. Review.

PMID:
23181737
14.

[Study of polymorphism of Fc gamma IIa receptors in Chilean patients with systemic lupus erythematosus].

Carrión F, Figueroa F, Martínez ME, Massardo L, Pérez T, Foster C, Mancilla C, Neira O, Guzmán L, Valenzuela V, Urrutia R, Carmona S, Figueroa M, Lubiano A, Wainstein E.

Rev Med Chil. 2003 Jan;131(1):11-8. Spanish.

PMID:
12643213
15.

Transcriptional responses of host peripheral blood cells to tuberculosis infection.

Lesho E, Forestiero FJ, Hirata MH, Hirata RD, Cecon L, Melo FF, Paik SH, Murata Y, Ferguson EW, Wang Z, Ooi GT.

Tuberculosis (Edinb). 2011 Sep;91(5):390-9. doi: 10.1016/j.tube.2011.07.002. Epub 2011 Aug 10.

PMID:
21835698
16.

Identification of novel microRNA signatures linked to human lupus disease activity and pathogenesis: miR-21 regulates aberrant T cell responses through regulation of PDCD4 expression.

Stagakis E, Bertsias G, Verginis P, Nakou M, Hatziapostolou M, Kritikos H, Iliopoulos D, Boumpas DT.

Ann Rheum Dis. 2011 Aug;70(8):1496-506. doi: 10.1136/ard.2010.139857. Epub 2011 May 20.

PMID:
21602271
17.

[Development of antituberculous drugs: current status and future prospects].

Tomioka H, Namba K.

Kekkaku. 2006 Dec;81(12):753-74. Review. Japanese.

PMID:
17240921
18.

Interactions among type I and type II interferon, tumor necrosis factor, and beta-estradiol in the regulation of immune response-related gene expressions in systemic lupus erythematosus.

Lee HM, Mima T, Sugino H, Aoki C, Adachi Y, Yoshio-Hoshino N, Matsubara K, Nishimoto N.

Arthritis Res Ther. 2009;11(1):R1. doi: 10.1186/ar2584. Epub 2009 Jan 3.

19.

Elevated gene expression of Th1/Th2 associated transcription factors is correlated with disease activity in patients with systemic lupus erythematosus.

Lit LC, Wong CK, Li EK, Tam LS, Lam CW, Lo YM.

J Rheumatol. 2007 Jan;34(1):89-96. Epub 2006 Nov 15.

PMID:
17117487
20.

Disease activity in systemic lupus erythematosus is associated with an altered expression of low-affinity Fc gamma receptors and costimulatory molecules on dendritic cells.

Carreño LJ, Pacheco R, Gutierrez MA, Jacobelli S, Kalergis AM.

Immunology. 2009 Nov;128(3):334-41. doi: 10.1111/j.1365-2567.2009.03138.x.

Supplemental Content

Support Center