Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

Tissue- and cell-type specific transcriptome profiling of expanding tomato fruit provides insights into metabolic and regulatory specialization and cuticle formation.

Matas AJ, Yeats TH, Buda GJ, Zheng Y, Chatterjee S, Tohge T, Ponnala L, Adato A, Aharoni A, Stark R, Fernie AR, Fei Z, Giovannoni JJ, Rose JK.

Plant Cell. 2011 Nov;23(11):3893-910. doi: 10.1105/tpc.111.091173. Epub 2011 Nov 1.

2.

Comprehensive Tissue-Specific Transcriptome Analysis Reveals Distinct Regulatory Programs during Early Tomato Fruit Development.

Pattison RJ, Csukasi F, Zheng Y, Fei Z, van der Knaap E, Catalá C.

Plant Physiol. 2015 Aug;168(4):1684-701. doi: 10.1104/pp.15.00287. Epub 2015 Jun 22.

3.

The tomato SlSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning.

Shi JX, Adato A, Alkan N, He Y, Lashbrooke J, Matas AJ, Meir S, Malitsky S, Isaacson T, Prusky D, Leshkowitz D, Schreiber L, Granell AR, Widemann E, Grausem B, Pinot F, Rose JK, Rogachev I, Rothan C, Aharoni A.

New Phytol. 2013 Jan;197(2):468-80. doi: 10.1111/nph.12032. Epub 2012 Dec 3.

4.

Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development.

Mounet F, Moing A, Garcia V, Petit J, Maucourt M, Deborde C, Bernillon S, Le Gall G, Colquhoun I, Defernez M, Giraudel JL, Rolin D, Rothan C, Lemaire-Chamley M.

Plant Physiol. 2009 Mar;149(3):1505-28. doi: 10.1104/pp.108.133967. Epub 2009 Jan 14.

5.

Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development.

Rohrmann J, Tohge T, Alba R, Osorio S, Caldana C, McQuinn R, Arvidsson S, van der Merwe MJ, Riaño-Pachón DM, Mueller-Roeber B, Fei Z, Nesi AN, Giovannoni JJ, Fernie AR.

Plant J. 2011 Dec;68(6):999-1013. doi: 10.1111/j.1365-313X.2011.04750.x. Epub 2011 Oct 25.

6.

Maturity and ripening-stage specific modulation of tomato (Solanum lycopersicum) fruit transcriptome.

Srivastava A, Gupta AK, Datsenka T, Mattoo AK, Handa AK.

GM Crops. 2010 Jul-Sep;1(4):237-49. doi: 10.4161/gmcr.1.4.13737.

PMID:
21844679
7.

Transcriptional Activity of the MADS Box ARLEQUIN/TOMATO AGAMOUS-LIKE1 Gene Is Required for Cuticle Development of Tomato Fruit.

Giménez E, Dominguez E, Pineda B, Heredia A, Moreno V, Lozano R, Angosto T.

Plant Physiol. 2015 Jul;168(3):1036-48. doi: 10.1104/pp.15.00469. Epub 2015 May 27.

8.

Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families.

Pattison RJ, Catalá C.

Plant J. 2012 May;70(4):585-98. doi: 10.1111/j.1365-313X.2011.04895.x. Epub 2012 Feb 10.

9.

Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato.

Nambeesan S, Datsenka T, Ferruzzi MG, Malladi A, Mattoo AK, Handa AK.

Plant J. 2010 Sep;63(5):836-47. doi: 10.1111/j.1365-313X.2010.04286.x.

10.

Spatiotemporal transcriptome provides insights into early fruit development of tomato (Solanum lycopersicum).

Zhang S, Xu M, Qiu Z, Wang K, Du Y, Gu L, Cui X.

Sci Rep. 2016 Mar 18;6:23173. doi: 10.1038/srep23173.

11.

The Tomato MIXTA-Like Transcription Factor Coordinates Fruit Epidermis Conical Cell Development and Cuticular Lipid Biosynthesis and Assembly.

Lashbrooke J, Adato A, Lotan O, Alkan N, Tsimbalist T, Rechav K, Fernandez-Moreno JP, Widemann E, Grausem B, Pinot F, Granell A, Costa F, Aharoni A.

Plant Physiol. 2015 Dec;169(4):2553-71. doi: 10.1104/pp.15.01145. Epub 2015 Oct 6.

12.

Functional characterization of a tomato COBRA-like gene functioning in fruit development and ripening.

Cao Y, Tang X, Giovannoni J, Xiao F, Liu Y.

BMC Plant Biol. 2012 Nov 10;12:211. doi: 10.1186/1471-2229-12-211.

13.

The sugar transporter inventory of tomato: genome-wide identification and expression analysis.

Reuscher S, Akiyama M, Yasuda T, Makino H, Aoki K, Shibata D, Shiratake K.

Plant Cell Physiol. 2014 Jun;55(6):1123-41. doi: 10.1093/pcp/pcu052. Epub 2014 May 14.

PMID:
24833026
14.

Transcriptome Profiling of Tomato Fruit Development Reveals Transcription Factors Associated with Ascorbic Acid, Carotenoid and Flavonoid Biosynthesis.

Ye J, Hu T, Yang C, Li H, Yang M, Ijaz R, Ye Z, Zhang Y.

PLoS One. 2015 Jul 2;10(7):e0130885. doi: 10.1371/journal.pone.0130885. eCollection 2015.

15.

Metabolic regulation underlying tomato fruit development.

Carrari F, Fernie AR.

J Exp Bot. 2006;57(9):1883-97. Epub 2006 Jan 31. Review.

PMID:
16449380
16.

Tissue specialization at the metabolite level is perceived during the development of tomato fruit.

Moco S, Capanoglu E, Tikunov Y, Bino RJ, Boyacioglu D, Hall RD, Vervoort J, De Vos RC.

J Exp Bot. 2007;58(15-16):4131-46. Epub 2007 Dec 7.

PMID:
18065765
17.

Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit.

Jones B, Frasse P, Olmos E, Zegzouti H, Li ZG, Latché A, Pech JC, Bouzayen M.

Plant J. 2002 Nov;32(4):603-13.

18.

Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato.

Moore S, Vrebalov J, Payton P, Giovannoni J.

J Exp Bot. 2002 Oct;53(377):2023-30. Review.

PMID:
12324526
19.
20.

Genome-wide identification of pistil-specific genes expressed during fruit set initiation in tomato (Solanum lycopersicum).

Ezura K, Ji-Seong K, Mori K, Suzuki Y, Kuhara S, Ariizumi T, Ezura H.

PLoS One. 2017 Jul 6;12(7):e0180003. doi: 10.1371/journal.pone.0180003. eCollection 2017.

Supplemental Content

Support Center