Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging.

Szulwach KE, Li X, Li Y, Song CX, Wu H, Dai Q, Irier H, Upadhyay AK, Gearing M, Levey AI, Vasanthakumar A, Godley LA, Chang Q, Cheng X, He C, Jin P.

Nat Neurosci. 2011 Oct 30;14(12):1607-16. doi: 10.1038/nn.2959.

2.

Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntington's disease.

Wang F, Yang Y, Lin X, Wang JQ, Wu YS, Xie W, Wang D, Zhu S, Liao YQ, Sun Q, Yang YG, Luo HR, Guo C, Han C, Tang TS.

Hum Mol Genet. 2013 Sep 15;22(18):3641-53. doi: 10.1093/hmg/ddt214. Epub 2013 May 12.

PMID:
23669348
3.

Methylation on the mind.

Flax JD, Soloway PD.

Nat Neurosci. 2011 Nov 23;14(12):1494-6. doi: 10.1038/nn.2988. No abstract available.

PMID:
22119946
4.

Genome-wide DNA hydroxymethylation changes are associated with neurodevelopmental genes in the developing human cerebellum.

Wang T, Pan Q, Lin L, Szulwach KE, Song CX, He C, Wu H, Warren ST, Jin P, Duan R, Li X.

Hum Mol Genet. 2012 Dec 15;21(26):5500-10. doi: 10.1093/hmg/dds394. Epub 2012 Oct 5.

5.

Array-based assay detects genome-wide 5-mC and 5-hmC in the brains of humans, non-human primates, and mice.

Chopra P, Papale LA, White AT, Hatch A, Brown RM, Garthwaite MA, Roseboom PH, Golos TG, Warren ST, Alisch RS.

BMC Genomics. 2014 Feb 13;15:131. doi: 10.1186/1471-2164-15-131.

6.

Global epigenomic reconfiguration during mammalian brain development.

Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu JC, Rao A, Esteller M, He C, Haghighi FG, Sejnowski TJ, Behrens MM, Ecker JR.

Science. 2013 Aug 9;341(6146):1237905. doi: 10.1126/science.1237905. Epub 2013 Jul 4.

7.

Elevated 5-hydroxymethylcytosine in the Engrailed-2 (EN-2) promoter is associated with increased gene expression and decreased MeCP2 binding in autism cerebellum.

James SJ, Shpyleva S, Melnyk S, Pavliv O, Pogribny IP.

Transl Psychiatry. 2014 Oct 7;4:e460. doi: 10.1038/tp.2014.87.

8.

Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells.

Szulwach KE, Li X, Li Y, Song CX, Han JW, Kim S, Namburi S, Hermetz K, Kim JJ, Rudd MK, Yoon YS, Ren B, He C, Jin P.

PLoS Genet. 2011 Jun;7(6):e1002154. doi: 10.1371/journal.pgen.1002154. Epub 2011 Jun 23.

9.

Whole-genome analysis of 5-hydroxymethylcytosine and 5-methylcytosine at base resolution in the human brain.

Wen L, Li X, Yan L, Tan Y, Li R, Zhao Y, Wang Y, Xie J, Zhang Y, Song C, Yu M, Liu X, Zhu P, Li X, Hou Y, Guo H, Wu X, He C, Li R, Tang F, Qiao J.

Genome Biol. 2014 Mar 4;15(3):R49. doi: 10.1186/gb-2014-15-3-r49.

10.

High sensitivity 5-hydroxymethylcytosine detection in Balb/C brain tissue.

Davis T, Vaisvila R.

J Vis Exp. 2011 Feb 1;(48). pii: 2661. doi: 10.3791/2661.

11.

Correlated 5-Hydroxymethylcytosine (5hmC) and Gene Expression Profiles Underpin Gene and Organ-Specific Epigenetic Regulation in Adult Mouse Brain and Liver.

Lin IH, Chen YF, Hsu MT.

PLoS One. 2017 Jan 26;12(1):e0170779. doi: 10.1371/journal.pone.0170779. eCollection 2017.

12.

Temporal shift in methyl-CpG binding protein 2 expression in a mouse model of Rett syndrome.

Metcalf BM, Mullaney BC, Johnston MV, Blue ME.

Neuroscience. 2006;139(4):1449-60. Epub 2006 Mar 23.

PMID:
16549272
13.

Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development.

Ruzov A, Tsenkina Y, Serio A, Dudnakova T, Fletcher J, Bai Y, Chebotareva T, Pells S, Hannoun Z, Sullivan G, Chandran S, Hay DC, Bradley M, Wilmut I, De Sousa P.

Cell Res. 2011 Sep;21(9):1332-42. doi: 10.1038/cr.2011.113. Epub 2011 Jul 12.

14.

Environmental enrichment modulates 5-hydroxymethylcytosine dynamics in hippocampus.

Irier H, Street RC, Dave R, Lin L, Cai C, Davis TH, Yao B, Cheng Y, Jin P.

Genomics. 2014 Nov;104(5):376-82. doi: 10.1016/j.ygeno.2014.08.019. Epub 2014 Sep 7.

15.

The role of 5-hydroxymethylcytosine in aging and Alzheimer's disease: current status and prospects for future studies.

van den Hove DL, Chouliaras L, Rutten BP.

Curr Alzheimer Res. 2012 Jun;9(5):545-9.

PMID:
22272626
16.

High-throughput sequencing offers new insights into 5-hydroxymethylcytosine.

Pang AP, Sugai C, Maunakea AK.

Biomol Concepts. 2016 Jun 1;7(3):169-78. doi: 10.1515/bmc-2016-0011. Review.

17.

Hydroxymethylcytosine and demethylation of the γ-globin gene promoter during erythroid differentiation.

Ruiz MA, Rivers A, Ibanez V, Vaitkus K, Mahmud N, DeSimone J, Lavelle D.

Epigenetics. 2015;10(5):397-407. doi: 10.1080/15592294.2015.1039220.

18.

Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-hydroxymethylcytosine.

Minor EA, Court BL, Young JI, Wang G.

J Biol Chem. 2013 May 10;288(19):13669-74. doi: 10.1074/jbc.C113.464800. Epub 2013 Apr 2.

19.

5-Hydroxymethylcytosine is a predominantly stable DNA modification.

Bachman M, Uribe-Lewis S, Yang X, Williams M, Murrell A, Balasubramanian S.

Nat Chem. 2014 Dec;6(12):1049-55. doi: 10.1038/nchem.2064. Epub 2014 Sep 21.

Supplemental Content

Support Center