Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 83

1.

Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells.

Hou BH, Takanaga H, Grossmann G, Chen LQ, Qu XQ, Jones AM, Lalonde S, Schweissgut O, Wiechert W, Frommer WB.

Nat Protoc. 2011 Oct 27;6(11):1818-33. doi: 10.1038/nprot.2011.392.

PMID:
22036884
2.

Optical sensors for measuring dynamic changes of cytosolic metabolite levels in yeast.

Bermejo C, Haerizadeh F, Takanaga H, Chermak D, Frommer WB.

Nat Protoc. 2011 Oct 27;6(11):1806-17. doi: 10.1038/nprot.2011.391.

PMID:
22036883
3.

Dynamic imaging of glucose flux impedance using FRET sensors in wild-type Arabidopsis plants.

Chaudhuri B, Hörmann F, Frommer WB.

J Exp Bot. 2011 Apr;62(7):2411-7. doi: 10.1093/jxb/erq444.

PMID:
21266495
4.

Quantitative imaging with fluorescent biosensors.

Okumoto S, Jones A, Frommer WB.

Annu Rev Plant Biol. 2012;63:663-706. doi: 10.1146/annurev-arplant-042110-103745. Review.

PMID:
22404462
5.

FRET-based genetically-encoded sensors for quantitative monitoring of metabolites.

Mohsin M, Ahmad A, Iqbal M.

Biotechnol Lett. 2015 Oct;37(10):1919-28. doi: 10.1007/s10529-015-1873-6. Review.

PMID:
26184603
6.

Quantitative imaging for discovery and assembly of the metabo-regulome.

Okumoto S, Takanaga H, Frommer WB.

New Phytol. 2008;180(2):271-95. doi: 10.1111/j.1469-8137.2008.02611.x. Review.

7.

Minimally invasive dynamic imaging of ions and metabolites in living cells.

Fehr M, Ehrhardt DW, Lalonde S, Frommer WB.

Curr Opin Plant Biol. 2004 Jun;7(3):345-51. Review.

PMID:
15134757
8.

Development and use of fluorescent nanosensors for metabolite imaging in living cells.

Fehr M, Okumoto S, Deuschle K, Lager I, Looger LL, Persson J, Kozhukh L, Lalonde S, Frommer WB.

Biochem Soc Trans. 2005 Feb;33(Pt 1):287-90.

PMID:
15667328
9.

In vivo biochemistry: quantifying ion and metabolite levels in individual cells or cultures of yeast.

Bermejo C, Ewald JC, Lanquar V, Jones AM, Frommer WB.

Biochem J. 2011 Aug 15;438(1):1-10. doi: 10.1042/BJ20110428. Review.

PMID:
21793803
10.

Quantitative glucose and ATP sensing in mammalian cells.

Liemburg-Apers DC, Imamura H, Forkink M, Nooteboom M, Swarts HG, Brock R, Smeitink JA, Willems PH, Koopman WJ.

Pharm Res. 2011 Nov;28(11):2745-57. doi: 10.1007/s11095-011-0492-8. Review.

PMID:
21691894
11.

Semisynthesis of fluorescent metabolite sensors on cell surfaces.

Brun MA, Griss R, Reymond L, Tan KT, Piguet J, Peters RJ, Vogel H, Johnsson K.

J Am Chem Soc. 2011 Oct 12;133(40):16235-42. doi: 10.1021/ja206915m.

PMID:
21879732
12.

Dynamic analysis of cytosolic glucose and ATP levels in yeast using optical sensors.

Bermejo C, Haerizadeh F, Takanaga H, Chermak D, Frommer WB.

Biochem J. 2010 Dec 1;432(2):399-406. doi: 10.1042/BJ20100946.

13.

A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example.

van der Krogt GN, Ogink J, Ponsioen B, Jalink K.

PLoS One. 2008 Apr 2;3(4):e1916. doi: 10.1371/journal.pone.0001916.

14.

Receptor-regulated dynamic interaction between endothelial nitric oxide synthase and calmodulin revealed by fluorescence resonance energy transfer in living cells.

Jobin CM, Chen H, Lin AJ, Yacono PW, Igarashi J, Michel T, Golan DE.

Biochemistry. 2003 Oct 14;42(40):11716-25.

PMID:
14529282
15.

FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells.

Börner S, Schwede F, Schlipp A, Berisha F, Calebiro D, Lohse MJ, Nikolaev VO.

Nat Protoc. 2011 Apr;6(4):427-38. doi: 10.1038/nprot.2010.198.

PMID:
21412271
16.

Conversion of a putative Agrobacterium sugar-binding protein into a FRET sensor with high selectivity for sucrose.

Lager I, Looger LL, Hilpert M, Lalonde S, Frommer WB.

J Biol Chem. 2006 Oct 13;281(41):30875-83.

17.

Simultaneous live cell imaging using dual FRET sensors with a single excitation light.

Niino Y, Hotta K, Oka K.

PLoS One. 2009 Jun 24;4(6):e6036. doi: 10.1371/journal.pone.0006036.

18.

Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors.

Aoki K, Matsuda M.

Nat Protoc. 2009;4(11):1623-31. doi: 10.1038/nprot.2009.175.

PMID:
19834477
19.

Quantitative imaging approaches for small-molecule measurements using FRET sensors in plants.

Okumoto S.

Methods Mol Biol. 2014;1083:55-64. doi: 10.1007/978-1-62703-661-0_5.

PMID:
24218210
20.

pHlameleons: a family of FRET-based protein sensors for quantitative pH imaging.

Esposito A, Gralle M, Dani MA, Lange D, Wouters FS.

Biochemistry. 2008 Dec 9;47(49):13115-26. doi: 10.1021/bi8009482.

PMID:
19007185
Items per page

Supplemental Content

Support Center